School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland.
Anal Bioanal Chem. 2010 Jun;397(3):1069-82. doi: 10.1007/s00216-009-3305-8. Epub 2009 Dec 9.
Recent developments in chromatographic supports and instrumentation for liquid chromatography (LC) are enabling rapid and highly efficient separations. Various analytical strategies have been proposed, for example the use of silica-based monolithic supports, elevated mobile phase temperatures, and columns packed with sub-3 microm superficially porous particles (fused core) or with sub-2 microm porous particles for use in ultra-high-pressure LC (UHPLC). The purpose of this review is to describe and compare these approaches in terms of throughput and resolving power, using kinetic data gathered for compounds with molecular weights ranging between 200 and 1300 g mol(-1) in isocratic and gradient modes. This study demonstrates that the best analytical strategy should be selected on the basis of the analytical problem (e.g., isocratic vs. gradient, throughput vs. efficiency) and the properties of the analyte. UHPLC and fused-core technologies are quite promising for small-molecular-weight compounds, but increasing the mobile phase temperature is useful for larger molecules, for example peptides.
近年来,液相色谱(LC)中色谱支持物和仪器的发展使得快速高效的分离成为可能。已经提出了各种分析策略,例如使用基于硅胶的整体式支撑物、提高流动相温度、以及使用亚 3 微米表面多孔颗粒(熔融核)填充的色谱柱或使用亚 2 微米多孔颗粒填充的色谱柱来进行超高效液相色谱(UHPLC)。本综述的目的是根据动力学数据,在等度和梯度模式下,对这些方法在通量和分辨率方面进行描述和比较,这些动力学数据是针对分子量在 200 至 1300 g/mol 之间的化合物收集的。该研究表明,应根据分析问题(例如,等度与梯度、通量与效率)和分析物的性质来选择最佳的分析策略。UHPLC 和熔融核技术对于小分子化合物非常有前途,但提高流动相温度对于较大的分子(例如肽)很有用。