Suppr超能文献

延迟折扣和逆转过程中前额叶皮质与杏仁核之间的相互作用。

Interactions between the prefrontal cortex and amygdala during delay discounting and reversal.

作者信息

Churchwell John C, Morris Andrea M, Heurtelou Nila M, Kesner Raymond P

机构信息

The Brain Institute, Department of Psychology, University of Utah, Salt Lake City, UT 84108, USA.

出版信息

Behav Neurosci. 2009 Dec;123(6):1185-96. doi: 10.1037/a0017734.

Abstract

Interactions between the prefrontal cortex and amygdala are thought to be critical for reward anticipation. Alterations in reward anticipation that lead to an inability to wait for rewards or a diminished capacity to change behavior when doing so would be optimal are often termed impulsivity and compulsivity, respectively. Distinct regions of the prefrontal cortex may support decreased impulsivity through self-control and decreased compulsivity through flexibility. However, both self-control and flexibility appear to involve the amygdala. Using a delay discounting paradigm, the current investigation found that inactivation and disconnection of the medial prefrontal cortex and basolateral amygdala led rats to become more impulsive by affecting preference for smaller immediate over larger delayed rewards. Conversely, inactivation and disconnection of the orbitofrontal cortex and amygdala led rats to become more compulsive as demonstrated by an inability to flexibly reverse stimulus-reward relationships in an odor reversal task. The current findings support a double dissociation between orbitofrontal cortex-amygdala interactions for odor reversal and medial prefrontal cortex-amygdala interactions for delay discounting.

摘要

前额叶皮质与杏仁核之间的相互作用被认为对奖励预期至关重要。奖励预期的改变导致无法等待奖励,或者在这样做是最佳选择时改变行为的能力减弱,通常分别被称为冲动性和强迫性。前额叶皮质的不同区域可能通过自我控制来支持冲动性降低,并通过灵活性来支持强迫性降低。然而,自我控制和灵活性似乎都涉及杏仁核。使用延迟折扣范式,当前的研究发现,内侧前额叶皮质和基底外侧杏仁核的失活和切断会影响大鼠对较小即时奖励而非较大延迟奖励的偏好,从而使其变得更加冲动。相反,眶额叶皮质和杏仁核的失活和切断使大鼠变得更加强迫,这在气味反转任务中表现为无法灵活地反转刺激-奖励关系。当前的研究结果支持了眶额叶皮质-杏仁核在气味反转方面的相互作用与内侧前额叶皮质-杏仁核在延迟折扣方面的相互作用之间的双重分离。

相似文献

1
Interactions between the prefrontal cortex and amygdala during delay discounting and reversal.
Behav Neurosci. 2009 Dec;123(6):1185-96. doi: 10.1037/a0017734.
3
Ventral medial prefrontal cortex inactivation impairs impulse control but does not affect delay-discounting in rats.
Behav Brain Res. 2014 May 1;264:230-9. doi: 10.1016/j.bbr.2014.02.013. Epub 2014 Feb 17.
4
The involvement of the orbitofrontal cortex in learning under changing task contingencies.
Neurobiol Learn Mem. 2005 Mar;83(2):125-33. doi: 10.1016/j.nlm.2004.10.003.
6
Prelimbic Cortical Neurons Track Preferred Reward Value and Reflect Impulsive Choice during Delay Discounting Behavior.
J Neurosci. 2019 Apr 17;39(16):3108-3118. doi: 10.1523/JNEUROSCI.2532-18.2019. Epub 2019 Feb 12.
7
Contributions of the amygdala and medial prefrontal cortex to incentive cue responding.
Neuroscience. 2008 Aug 26;155(3):573-84. doi: 10.1016/j.neuroscience.2008.06.037. Epub 2008 Jun 21.
8
Basolateral amygdala lesions facilitate reward choices after negative feedback in rats.
J Neurosci. 2013 Feb 27;33(9):4105-9. doi: 10.1523/JNEUROSCI.4942-12.2013.
9
Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning.
J Neurosci. 2017 Feb 22;37(8):2186-2202. doi: 10.1523/JNEUROSCI.0933-16.2017. Epub 2017 Jan 25.
10
Selective involvement by the medial orbitofrontal cortex in biasing risky, but not impulsive, choice.
Cereb Cortex. 2014 Jan;24(1):154-62. doi: 10.1093/cercor/bhs297. Epub 2012 Oct 4.

引用本文的文献

1
Impulsive Choices Emerge When the Anterior Cingulate Cortex Fails to Encode Deliberative Strategies.
eNeuro. 2024 Nov 18;11(11). doi: 10.1523/ENEURO.0379-24.2024. Print 2024 Nov.
2
Cross-species translational paradigms for assessing positive valence system as defined by the RDoC matrix.
J Neurochem. 2025 Jan;169(1):e16243. doi: 10.1111/jnc.16243. Epub 2024 Oct 28.
3
Orbitofrontal Cortex Mediates Sustained Basolateral Amygdala Encoding of Cued Reward-Seeking States.
J Neurosci. 2024 Nov 13;44(46):e0013242024. doi: 10.1523/JNEUROSCI.0013-24.2024.
5
Basolateral amygdala population coding of a cued reward seeking state depends on orbitofrontal cortex.
bioRxiv. 2024 Jan 1:2023.12.31.573789. doi: 10.1101/2023.12.31.573789.
7
Different topological patterns in structural covariance networks between high and low delay discounters.
Front Psychol. 2023 Aug 30;14:1210652. doi: 10.3389/fpsyg.2023.1210652. eCollection 2023.
8
Selective chemogenetic inactivation of corticoaccumbal projections disrupts trait choice impulsivity.
Neuropsychopharmacology. 2023 Nov;48(12):1821-1831. doi: 10.1038/s41386-023-01604-5. Epub 2023 May 19.
9
The Effects of the Inhalant Toluene on Cognitive Function and Behavioral Flexibility: A Review of Recent Findings.
Addict Neurosci. 2023 Mar;5. doi: 10.1016/j.addicn.2022.100059. Epub 2022 Dec 22.

本文引用的文献

1
Impulsive choice in hippocampal but not orbitofrontal cortex-lesioned rats on a nonspatial decision-making maze task.
Eur J Neurosci. 2009 Aug;30(3):472-84. doi: 10.1111/j.1460-9568.2009.06837.x. Epub 2009 Jul 28.
2
Fundamental contribution by the basolateral amygdala to different forms of decision making.
J Neurosci. 2009 Apr 22;29(16):5251-9. doi: 10.1523/JNEUROSCI.0315-09.2009.
3
Neural response to reward anticipation is modulated by Gray's impulsivity.
Neuroimage. 2009 Jul 15;46(4):1148-53. doi: 10.1016/j.neuroimage.2009.03.038. Epub 2009 Mar 25.
5
Neural circuits subserving behavioral flexibility and their relevance to schizophrenia.
Behav Brain Res. 2009 Dec 7;204(2):396-409. doi: 10.1016/j.bbr.2008.12.001. Epub 2008 Dec 6.
6
Cortico-limbic-striatal circuits subserving different forms of cost-benefit decision making.
Cogn Affect Behav Neurosci. 2008 Dec;8(4):375-89. doi: 10.3758/CABN.8.4.375.
9
Impulsivity as a determinant and consequence of drug use: a review of underlying processes.
Addict Biol. 2009 Jan;14(1):22-31. doi: 10.1111/j.1369-1600.2008.00129.x. Epub 2008 Oct 9.
10
Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks.
Eur J Neurosci. 2008 Oct;28(8):1437-48. doi: 10.1111/j.1460-9568.2008.06422.x. Epub 2008 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验