Suppr超能文献

针直径和流速对大鼠和人骨髓间充质基质细胞特性和活力的影响。

Effect of needle diameter and flow rate on rat and human mesenchymal stromal cell characterization and viability.

机构信息

Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas 77030, USA.

出版信息

Tissue Eng Part C Methods. 2010 Oct;16(5):989-97. doi: 10.1089/ten.TEC.2009.0423.

Abstract

INTRODUCTION

Current mesenchymal stromal cell (MSC) delivery methods require infusion/implantation through needles and/or catheters. Little investigation into the effect of delivery via catheter injection has been completed. We hypothesize that injection of rat and human MSCs through various clinically relevant-sized catheters and flow rates will not affect cell viability, characterization, or function.

METHODS

Both rat and human MSCs were injected through 20-, 25-, and 30-gauge needles, as well through an SL-10 microcatheter at rates of 60, 120, 240, and 500 mL/h. MSC viability and apoptotic fraction was measured. MSCs were characterized 24 h after injection with flow cytometric immunophenotyping, and multilineage differentiation was completed.

RESULTS

Catheter diameter or flow rate did not affect rat MSC viability. No clinically significant decrease in human MSC viability was observed immediately after injection; however, a delayed decrease in viability was observed at 24 h. No difference in the surface markers CD11b, CD45, CD29, CD49e, CD73, CD90, CD105, and Stro-1 or the capacity for multilineage differentiation (adipogenesis, osteogenesis, and chondrogenesis) was observed for either rat or human MSCs.

CONCLUSION

The injection of human and rat MSCs through various clinically relevant catheters and flow rates did not have a clinically significant effect on viability immediately after injection, indicating compliance with recently published Food and Drug Administration guidelines (viability >70%). Further, no changes in cell characterization or function were observed via measurement of cell surface markers and the capacity for multilineage differentiation, respectively. These results ensure the biocompatibility of MSCs with commonly used delivery methods.

摘要

简介

目前间充质基质细胞 (MSC) 的输送方法需要通过针和/或导管进行输注/植入。对于通过导管注射的效果的研究很少。我们假设通过各种临床相关尺寸的导管和流速注射大鼠和人 MSC 不会影响细胞活力、特征或功能。

方法

大鼠和人 MSC 分别通过 20、25 和 30 号针以及 SL-10 微导管以 60、120、240 和 500 mL/h 的速度注射。测量 MSC 活力和凋亡分数。注射后 24 小时,通过流式细胞术免疫表型对 MSC 进行特征分析,并完成多谱系分化。

结果

导管直径或流速不影响大鼠 MSC 活力。注射后立即未观察到人 MSC 活力有临床显著下降;然而,在 24 小时观察到活力延迟下降。大鼠和人 MSC 的表面标记物 CD11b、CD45、CD29、CD49e、CD73、CD90、CD105 和 Stro-1 或多谱系分化(脂肪生成、成骨和软骨形成)的能力没有差异。

结论

通过各种临床相关导管和流速注射人 MSC 和大鼠 MSC 对注射后立即的活力没有临床显著影响,表明符合最近发布的美国食品和药物管理局指南(活力 >70%)。此外,通过测量细胞表面标记物和多谱系分化的能力,分别观察到细胞特征和功能没有变化。这些结果确保了 MSC 与常用输送方法的生物相容性。

相似文献

1
Effect of needle diameter and flow rate on rat and human mesenchymal stromal cell characterization and viability.
Tissue Eng Part C Methods. 2010 Oct;16(5):989-97. doi: 10.1089/ten.TEC.2009.0423.
2
Immunophenotype characterization of rat mesenchymal stromal cells.
Cytotherapy. 2008;10(3):243-53. doi: 10.1080/14653240801950000.
3
MSCs can be differentially isolated from maternal, middle and fetal segments of the human umbilical cord.
Cytotherapy. 2016 Dec;18(12):1493-1502. doi: 10.1016/j.jcyt.2016.08.003. Epub 2016 Oct 7.
4
Aspiration, but not injection, decreases cultured equine mesenchymal stromal cell viability.
BMC Vet Res. 2016 Mar 7;12:45. doi: 10.1186/s12917-016-0671-2.
7
A Detailed Assessment of Varying Ejection Rate on Delivery Efficiency of Mesenchymal Stem Cells Using Narrow-Bore Needles.
Stem Cells Transl Med. 2016 Mar;5(3):366-78. doi: 10.5966/sctm.2015-0208. Epub 2016 Jan 29.
9
Human mesenchymal stromal cells express CD14 cross-reactive epitopes.
Cytometry A. 2011 Aug;79(8):635-45. doi: 10.1002/cyto.a.21073. Epub 2011 Jul 6.

引用本文的文献

1
Recent Advances in Alginate-Based Hydrogels for Cell Transplantation Applications.
Pharmaceutics. 2024 Mar 27;16(4):469. doi: 10.3390/pharmaceutics16040469.
3
Innovations in cell therapy in pediatric diseases: a narrative review.
Transl Pediatr. 2023 Jun 30;12(6):1239-1257. doi: 10.21037/tp-23-92. Epub 2023 Jun 9.
5
Micromolding-based encapsulation of mesenchymal stromal cells in alginate for intraarticular injection in osteoarthritis.
Mater Today Bio. 2023 Feb 13;19:100581. doi: 10.1016/j.mtbio.2023.100581. eCollection 2023 Apr.
7
Detergent-Free Decellularization of Notochordal Cell-Derived Matrix Yields a Regenerative, Injectable, and Swellable Biomaterial.
ACS Biomater Sci Eng. 2022 Sep 12;8(9):3912-3923. doi: 10.1021/acsbiomaterials.2c00790. Epub 2022 Aug 9.
8
Dynamic seeding versus microinjection of mesenchymal stem cells for acellular nerve allograft: an in vitro comparison.
J Plast Reconstr Aesthet Surg. 2022 Aug;75(8):2821-2830. doi: 10.1016/j.bjps.2022.04.017. Epub 2022 Apr 22.
10
Development of Injectable Polydactyly-Derived Chondrocyte Sheets.
Int J Mol Sci. 2021 Mar 21;22(6):3198. doi: 10.3390/ijms22063198.

本文引用的文献

1
Contribution of stem cells to kidney repair.
Curr Stem Cell Res Ther. 2009 Jan;4(1):2-8. doi: 10.2174/157488809787169129.
2
Subacute neural stem cell therapy for traumatic brain injury.
J Surg Res. 2009 May 15;153(2):188-94. doi: 10.1016/j.jss.2008.03.037. Epub 2008 Apr 23.
3
Immunophenotype characterization of rat mesenchymal stromal cells.
Cytotherapy. 2008;10(3):243-53. doi: 10.1080/14653240801950000.
4
Treatment of traumatic brain injury in mice with marrow stromal cells.
Brain Res. 2008 May 7;1208:234-9. doi: 10.1016/j.brainres.2008.02.042. Epub 2008 Mar 4.
6
Cellular pathways to beta-cell replacement.
Diabetes Metab Res Rev. 2007 Feb;23(2):87-99. doi: 10.1002/dmrr.692.
7
Isolation and characterization of a stem cell population from adult human liver.
Stem Cells. 2006 Dec;24(12):2840-50. doi: 10.1634/stemcells.2006-0114. Epub 2006 Aug 31.
9
Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells.
Neurosurgery. 2003 Sep;53(3):697-702; discussion 702-3. doi: 10.1227/01.neu.0000079333.61863.aa.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验