Center for Infectious Disease Dynamics, Penn State University, University Park, PA 16802, USA.
BMC Bioinformatics. 2009 Dec 9;10:405. doi: 10.1186/1471-2105-10-405.
Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions) and the extent of clustering (the tendency for a set of three nodes to be interconnected) are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics.
Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks) provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics.Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks.
ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in unraveling the functional consequences of the structural properties of empirical biological systems and uncovering the mechanisms that drive these systems.
复杂的生物系统通常被建模为相互作用的单元网络。蛋白质之间的生化相互作用网络、宿主之间的流行病学联系以及生态系统中的营养相互作用等,为了解塑造和穿越这些系统的动态过程提供了有用的见解。节点的度数(相互作用的数量)和聚类程度(一组三个节点相互连接的趋势)是许多经过充分研究的网络属性中的两个,它们可以从根本上塑造一个系统。然而,要理清各种网络属性的相互影响可能是困难的。简单的网络模型可以帮助我们量化经验网络系统的结构,并了解各种拓扑属性对动力学的影响。
在这里,我们开发并实现了一种新的马尔可夫链模拟算法,用于生成具有指定度序列和聚类程度的简单、连通的随机图,但在其他方面都是随机的。该算法的实现(ClustRNet:聚类随机网络)提供了根据局部或全局、相对或绝对聚类度量进行优化的随机图生成。我们将我们的算法与其他类似方法进行了比较,并表明我们的算法更成功地生成了所需的网络特征。在生物信息学研究中,找到合适的零模型是至关重要的,而且通常是困难的,特别是对于生物网络。正如我们所展示的,当研究复杂网络特征对经验网络中除度和聚类的副产品之外的影响时,ClustRNet 生成的网络可以作为随机对照。
ClustRNet 生成具有指定边结构和聚类的图集合。这些图允许系统地研究连接性和冗余对网络功能和动力学的影响。这个过程是解开经验生物系统结构属性的功能后果并揭示驱动这些系统的机制的关键步骤。