Suppr超能文献

比较脑网络的差异度检验。

A difference degree test for comparing brain networks.

机构信息

Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia.

Department of Psychiatry and Neurology, Emory University School of Medicine, Atlanta, Georgia.

出版信息

Hum Brain Mapp. 2019 Oct 15;40(15):4518-4536. doi: 10.1002/hbm.24718. Epub 2019 Jul 26.

Abstract

Recently, there has been a proliferation of methods investigating functional connectivity as a biomarker for mental disorders. Typical approaches include massive univariate testing at each edge or comparisons of network metrics to identify differing topological features. Limitations of these methods include low statistical power due to the large number of comparisons and difficulty attributing overall differences in networks to local variation. We propose a method to capture the difference degree, which is the number of edges incident to each region in the difference network. Our difference degree test (DDT) is a two-step procedure for identifying brain regions incident to a significant number of differentially weighted edges (DWEs). First, we select a data-adaptive threshold which identifies the DWEs followed by a statistical test for the number of DWEs incident to each brain region. We achieve this by generating an appropriate set of null networks which are matched on the first and second moments of the observed difference network using the Hirschberger-Qi-Steuer algorithm. This formulation permits separation of the network's true topology from the nuisance topology induced by the correlation measure that alters interregional connectivity in ways unrelated to brain function. In simulations, the proposed approach outperforms competing methods in detecting differentially connected regions of interest. Application of DDT to a major depressive disorder dataset leads to the identification of brain regions in the default mode network commonly implicated in this ruminative disorder.

摘要

最近,出现了许多研究功能连接的方法,将其作为精神障碍的生物标志物。典型的方法包括在每条边进行大量的单变量检验,或比较网络指标以识别不同的拓扑特征。这些方法的局限性包括由于比较数量大而导致的统计功效低,以及难以将网络的整体差异归因于局部变化。我们提出了一种捕获差异程度的方法,即差异网络中每个区域的关联边数量。我们的差异度测试(DDT)是一种两步程序,用于识别与大量差异加权边(DWE)相关联的脑区。首先,我们选择一个数据自适应阈值,该阈值可以识别 DWE,然后对每个脑区关联的 DWE 数量进行统计检验。我们通过使用 Hirschberger-Qi-Steuer 算法生成一组与观察到的差异网络的第一和第二矩匹配的适当的零网络来实现这一点。这种公式允许从改变与大脑功能无关的区域间连通性的相关度量引起的干扰拓扑中分离网络的真实拓扑。在模拟中,所提出的方法在检测差异连接的感兴趣区域方面优于竞争方法。将 DDT 应用于重度抑郁症数据集,可识别与这种沉思障碍相关的默认模式网络中的脑区。

相似文献

1
A difference degree test for comparing brain networks.比较脑网络的差异度检验。
Hum Brain Mapp. 2019 Oct 15;40(15):4518-4536. doi: 10.1002/hbm.24718. Epub 2019 Jul 26.
3
Graph theory approach for the structural-functional brain connectome of depression.基于图论的抑郁症结构-功能脑连接组学研究。
Prog Neuropsychopharmacol Biol Psychiatry. 2021 Dec 20;111:110401. doi: 10.1016/j.pnpbp.2021.110401. Epub 2021 Jul 12.
5
Normative pathways in the functional connectome.功能连接组学中的规范途径。
Neuroimage. 2019 Jan 1;184:317-334. doi: 10.1016/j.neuroimage.2018.09.028. Epub 2018 Sep 14.
8
Rumination network dysfunction in major depression: A brain connectome study.重度抑郁症中的反刍思维网络功能障碍:一项脑连接组研究。
Prog Neuropsychopharmacol Biol Psychiatry. 2020 Mar 2;98:109819. doi: 10.1016/j.pnpbp.2019.109819. Epub 2019 Nov 14.

引用本文的文献

1
Semi-parametric Bayes regression with network-valued covariates.具有网络值协变量的半参数贝叶斯回归
Mach Learn. 2022 Oct;111(10):3733-3767. doi: 10.1007/s10994-022-06174-z. Epub 2022 Jun 2.
5
BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks.脑图基准:基于图神经网络的脑网络分析基准
IEEE Trans Med Imaging. 2023 Feb;42(2):493-506. doi: 10.1109/TMI.2022.3218745. Epub 2023 Feb 2.
8
Bayesian Joint Modeling of Multiple Brain Functional Networks.多个脑功能网络的贝叶斯联合建模
J Am Stat Assoc. 2021;116(534):518-530. doi: 10.1080/01621459.2020.1796357. Epub 2020 Sep 1.

本文引用的文献

1
Efficient Bayesian Regularization for Graphical Model Selection.用于图形模型选择的高效贝叶斯正则化
Bayesian Anal. 2019 Jun;14(2):449-476. doi: 10.1214/17-ba1086. Epub 2018 Jul 11.
2
Childhood trauma history is linked to abnormal brain connectivity in major depression.童年创伤史与重度抑郁症患者大脑连接异常有关。
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8582-8590. doi: 10.1073/pnas.1900801116. Epub 2019 Apr 8.
10
Is the brain really a small-world network?大脑真的是一个小世界网络吗?
Brain Struct Funct. 2016 May;221(4):2361-6. doi: 10.1007/s00429-015-1035-6. Epub 2015 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验