Suppr超能文献

当个体行为起作用时:流行病学中的同质模型和网络模型

When individual behaviour matters: homogeneous and network models in epidemiology.

作者信息

Bansal Shweta, Grenfell Bryan T, Meyers Lauren Ancel

机构信息

Computational and Applied Mathematics, Institute for Computational Engineering and Sciences, University of Texas at Austin, 1 University Station, C0200, Austin, TX 78712, USA.

出版信息

J R Soc Interface. 2007 Oct 22;4(16):879-91. doi: 10.1098/rsif.2007.1100.

Abstract

Heterogeneity in host contact patterns profoundly shapes population-level disease dynamics. Many epidemiological models make simplifying assumptions about the patterns of disease-causing interactions among hosts. In particular, homogeneous-mixing models assume that all hosts have identical rates of disease-causing contacts. In recent years, several network-based approaches have been developed to explicitly model heterogeneity in host contact patterns. Here, we use a network perspective to quantify the extent to which real populations depart from the homogeneous-mixing assumption, in terms of both the underlying network structure and the resulting epidemiological dynamics. We find that human contact patterns are indeed more heterogeneous than assumed by homogeneous-mixing models, but are not as variable as some have speculated. We then evaluate a variety of methodologies for incorporating contact heterogeneity, including network-based models and several modifications to the simple SIR compartmental model. We conclude that the homogeneous-mixing compartmental model is appropriate when host populations are nearly homogeneous, and can be modified effectively for a few classes of non-homogeneous networks. In general, however, network models are more intuitive and accurate for predicting disease spread through heterogeneous host populations.

摘要

宿主接触模式的异质性深刻地塑造了群体层面的疾病动态。许多流行病学模型对宿主间致病相互作用的模式做出了简化假设。特别是,均匀混合模型假定所有宿主具有相同的致病接触率。近年来,已开发出几种基于网络的方法来明确模拟宿主接触模式的异质性。在此,我们从网络角度,就基础网络结构和由此产生的流行病学动态,量化实际群体偏离均匀混合假设的程度。我们发现,人类接触模式确实比均匀混合模型所假定的更具异质性,但并不像一些人推测的那样多变。然后,我们评估了多种纳入接触异质性的方法,包括基于网络的模型以及对简单SIR compartmental模型的几种修改。我们得出结论,当宿主群体几乎均匀时,均匀混合compartmental模型是合适的,并且对于几类非均匀网络可以有效地进行修改。然而,总体而言,网络模型在预测疾病在异质宿主群体中的传播方面更直观且准确。

相似文献

1
When individual behaviour matters: homogeneous and network models in epidemiology.
J R Soc Interface. 2007 Oct 22;4(16):879-91. doi: 10.1098/rsif.2007.1100.
2
Building epidemiological models from R0: an implicit treatment of transmission in networks.
Proc Biol Sci. 2007 Feb 22;274(1609):505-12. doi: 10.1098/rspb.2006.0057.
3
Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.
BMC Infect Dis. 2016 Nov 14;16(1):676. doi: 10.1186/s12879-016-2003-3.
4
Networks and epidemic models.
J R Soc Interface. 2005 Sep 22;2(4):295-307. doi: 10.1098/rsif.2005.0051.
5
Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model.
Int J Environ Res Public Health. 2016 Feb 24;13(3):253. doi: 10.3390/ijerph13030253.
6
Susceptible-infected-recovered epidemics in dynamic contact networks.
Proc Biol Sci. 2007 Dec 7;274(1628):2925-33. doi: 10.1098/rspb.2007.1159.
8
Epidemic thresholds in dynamic contact networks.
J R Soc Interface. 2009 Mar 6;6(32):233-41. doi: 10.1098/rsif.2008.0218.
9
Space and contact networks: capturing the locality of disease transmission.
J R Soc Interface. 2006 Aug 22;3(9):483-93. doi: 10.1098/rsif.2005.0105.

引用本文的文献

1
A network-based model to assess vaccination strategies for the COVID-19 pandemic by using Bayesian optimization.
Chaos Solitons Fractals. 2024 Apr;181. doi: 10.1016/j.chaos.2024.114695. Epub 2024 Mar 14.
2
The spread of highly pathogenic avian influenza virus is a social network problem.
PLoS Pathog. 2025 Jul 7;21(7):e1013233. doi: 10.1371/journal.ppat.1013233. eCollection 2025 Jul.
3
A novel approach to estimating through infection networks: understanding regional transmission dynamics of COVID-19.
Front Public Health. 2025 Jun 18;13:1586786. doi: 10.3389/fpubh.2025.1586786. eCollection 2025.
4
Modeling the impact of hospitalization-induced behavioral changes on the spread of COVID-19 in New York City.
Infect Dis Model. 2025 May 27;10(4):1055-1092. doi: 10.1016/j.idm.2025.05.001. eCollection 2025 Dec.
5
Impact of information dissemination and behavioural responses on epidemic dynamics: A multi-layer network analysis.
Infect Dis Model. 2025 Apr 16;10(3):960-978. doi: 10.1016/j.idm.2025.04.004. eCollection 2025 Sep.
6
Breathing synchrony shapes respiratory disease risk in bottlenose dolphins.
Commun Biol. 2025 Jun 5;8(1):870. doi: 10.1038/s42003-025-08161-1.
7
Eco-evolutionary dynamics of pathogen immune-escape: deriving a population-level phylodynamic curve.
J R Soc Interface. 2025 Apr;22(225):20240675. doi: 10.1098/rsif.2024.0675. Epub 2025 Apr 2.
8
A National Synthetic Populations Dataset for the United States.
Sci Data. 2025 Jan 25;12(1):144. doi: 10.1038/s41597-025-04380-7.
10
Epihiper-A high performance computational modeling framework to support epidemic science.
PNAS Nexus. 2024 Dec 11;4(1):pgae557. doi: 10.1093/pnasnexus/pgae557. eCollection 2025 Jan.

本文引用的文献

1
Susceptible-infected-recovered epidemics in dynamic contact networks.
Proc Biol Sci. 2007 Dec 7;274(1628):2925-33. doi: 10.1098/rspb.2007.1159.
2
SIR dynamics in random networks with heterogeneous connectivity.
J Math Biol. 2008 Mar;56(3):293-310. doi: 10.1007/s00285-007-0116-4. Epub 2007 Aug 1.
3
Building epidemiological models from R0: an implicit treatment of transmission in networks.
Proc Biol Sci. 2007 Feb 22;274(1609):505-12. doi: 10.1098/rspb.2006.0057.
4
Network frailty and the geometry of herd immunity.
Proc Biol Sci. 2006 Nov 7;273(1602):2743-8. doi: 10.1098/rspb.2006.3636.
5
Networks and epidemic models.
J R Soc Interface. 2005 Sep 22;2(4):295-307. doi: 10.1098/rsif.2005.0051.
6
Semi-empirical power-law scaling of new infection rate to model epidemic dynamics with inhomogeneous mixing.
Math Biosci. 2006 Oct;203(2):301-18. doi: 10.1016/j.mbs.2006.01.007. Epub 2006 Mar 15.
7
Predicting epidemics on directed contact networks.
J Theor Biol. 2006 Jun 7;240(3):400-18. doi: 10.1016/j.jtbi.2005.10.004. Epub 2005 Nov 21.
8
Superspreading and the effect of individual variation on disease emergence.
Nature. 2005 Nov 17;438(7066):355-9. doi: 10.1038/nature04153.
9
Dynamical patterns of epidemic outbreaks in complex heterogeneous networks.
J Theor Biol. 2005 Jul 21;235(2):275-88. doi: 10.1016/j.jtbi.2005.01.011.
10
Subnets of scale-free networks are not scale-free: sampling properties of networks.
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4221-4. doi: 10.1073/pnas.0501179102. Epub 2005 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验