Suppr超能文献

当个体行为起作用时:流行病学中的同质模型和网络模型

When individual behaviour matters: homogeneous and network models in epidemiology.

作者信息

Bansal Shweta, Grenfell Bryan T, Meyers Lauren Ancel

机构信息

Computational and Applied Mathematics, Institute for Computational Engineering and Sciences, University of Texas at Austin, 1 University Station, C0200, Austin, TX 78712, USA.

出版信息

J R Soc Interface. 2007 Oct 22;4(16):879-91. doi: 10.1098/rsif.2007.1100.

Abstract

Heterogeneity in host contact patterns profoundly shapes population-level disease dynamics. Many epidemiological models make simplifying assumptions about the patterns of disease-causing interactions among hosts. In particular, homogeneous-mixing models assume that all hosts have identical rates of disease-causing contacts. In recent years, several network-based approaches have been developed to explicitly model heterogeneity in host contact patterns. Here, we use a network perspective to quantify the extent to which real populations depart from the homogeneous-mixing assumption, in terms of both the underlying network structure and the resulting epidemiological dynamics. We find that human contact patterns are indeed more heterogeneous than assumed by homogeneous-mixing models, but are not as variable as some have speculated. We then evaluate a variety of methodologies for incorporating contact heterogeneity, including network-based models and several modifications to the simple SIR compartmental model. We conclude that the homogeneous-mixing compartmental model is appropriate when host populations are nearly homogeneous, and can be modified effectively for a few classes of non-homogeneous networks. In general, however, network models are more intuitive and accurate for predicting disease spread through heterogeneous host populations.

摘要

宿主接触模式的异质性深刻地塑造了群体层面的疾病动态。许多流行病学模型对宿主间致病相互作用的模式做出了简化假设。特别是,均匀混合模型假定所有宿主具有相同的致病接触率。近年来,已开发出几种基于网络的方法来明确模拟宿主接触模式的异质性。在此,我们从网络角度,就基础网络结构和由此产生的流行病学动态,量化实际群体偏离均匀混合假设的程度。我们发现,人类接触模式确实比均匀混合模型所假定的更具异质性,但并不像一些人推测的那样多变。然后,我们评估了多种纳入接触异质性的方法,包括基于网络的模型以及对简单SIR compartmental模型的几种修改。我们得出结论,当宿主群体几乎均匀时,均匀混合compartmental模型是合适的,并且对于几类非均匀网络可以有效地进行修改。然而,总体而言,网络模型在预测疾病在异质宿主群体中的传播方面更直观且准确。

相似文献

4
Networks and epidemic models.网络与流行病模型。
J R Soc Interface. 2005 Sep 22;2(4):295-307. doi: 10.1098/rsif.2005.0051.
8
Epidemic thresholds in dynamic contact networks.动态接触网络中的流行阈值。
J R Soc Interface. 2009 Mar 6;6(32):233-41. doi: 10.1098/rsif.2008.0218.

引用本文的文献

8

本文引用的文献

2
SIR dynamics in random networks with heterogeneous connectivity.具有异质连通性的随机网络中的SIR动力学。
J Math Biol. 2008 Mar;56(3):293-310. doi: 10.1007/s00285-007-0116-4. Epub 2007 Aug 1.
4
Network frailty and the geometry of herd immunity.网络脆弱性与群体免疫的几何学
Proc Biol Sci. 2006 Nov 7;273(1602):2743-8. doi: 10.1098/rspb.2006.3636.
5
Networks and epidemic models.网络与流行病模型。
J R Soc Interface. 2005 Sep 22;2(4):295-307. doi: 10.1098/rsif.2005.0051.
7
Predicting epidemics on directed contact networks.预测有向接触网络上的流行病。
J Theor Biol. 2006 Jun 7;240(3):400-18. doi: 10.1016/j.jtbi.2005.10.004. Epub 2005 Nov 21.
10
Subnets of scale-free networks are not scale-free: sampling properties of networks.无标度网络的子网并非无标度:网络的抽样特性
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4221-4. doi: 10.1073/pnas.0501179102. Epub 2005 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验