Suppr超能文献

整合复杂的基因组数据集和肿瘤细胞敏感性谱,以解决一个“简单”的问题:哪些患者应该使用这种药物?

Integrating complex genomic datasets and tumour cell sensitivity profiles to address a 'simple' question: which patients should get this drug?

机构信息

Center for Molecular Therapeutics, Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA.

出版信息

BMC Med. 2009 Dec 14;7:78. doi: 10.1186/1741-7015-7-78.

Abstract

It is becoming increasingly apparent that cancer drug therapies can only reach their full potential through appropriate patient selection. Matching drugs and cancer patients has proven to be a complex challenge, due in large part to the substantial molecular heterogeneity inherent to human cancers. This is not only a major hurdle to the improvement of the use of current treatments but also for the development of novel therapies and the ability to steer them to the relevant clinical indications. In this commentary we discuss recent studies from Kuo et al., published this month in BMC Medicine, in which they used a panel of cancer cell lines as a model for capturing patient heterogeneity at the genomic and proteomic level in order to identify potential biomarkers for predicting the clinical activity of a novel candidate chemotherapeutic across a patient population. The findings highlight the ability of a 'systems approach' to develop a better understanding of the properties of novel candidate therapeutics and to guide clinical testing and application.See the associated research paper by Kuo et al: http://www.biomedcentral.com/1741-7015/7/77.

摘要

越来越明显的是,癌症药物治疗只有通过适当的患者选择才能充分发挥其潜力。由于人类癌症固有的大量分子异质性,药物与癌症患者的匹配已被证明是一项复杂的挑战。这不仅是提高现有治疗方法使用的主要障碍,也是开发新疗法的障碍,也是将它们引导到相关临床适应症的障碍。在这篇评论中,我们讨论了本月发表在 BMC Medicine 上的 Kuo 等人的最新研究,他们使用一系列癌细胞系作为模型,在基因组和蛋白质组水平上捕获患者异质性,以确定预测新型候选化疗药物在患者群体中的临床活性的潜在生物标志物。研究结果强调了“系统方法”的能力,即更好地了解新型候选治疗药物的特性,并指导临床测试和应用。

相似文献

4
Optimal drug prediction from personal genomics profiles.基于个人基因组图谱的最佳药物预测。
IEEE J Biomed Health Inform. 2015 Jul;19(4):1264-70. doi: 10.1109/JBHI.2015.2412522. Epub 2015 Mar 13.
6
Cancer biomarker discovery and translation: proteomics and beyond.癌症生物标志物的发现和转化:蛋白质组学及其他。
Expert Rev Proteomics. 2019 Feb;16(2):93-103. doi: 10.1080/14789450.2019.1559062. Epub 2018 Dec 24.
7
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
Status of Immune Oncology: Challenges and Opportunities.免疫肿瘤学的现状:挑战与机遇
Methods Mol Biol. 2020;2055:3-21. doi: 10.1007/978-1-4939-9773-2_1.

本文引用的文献

4
Genetic prognostic and predictive markers in colorectal cancer.结直肠癌的基因预后和预测标志物
Nat Rev Cancer. 2009 Jul;9(7):489-99. doi: 10.1038/nrc2645. Epub 2009 Jun 18.
8
The use of genomics in clinical trial design.基因组学在临床试验设计中的应用。
Clin Cancer Res. 2008 Oct 1;14(19):5984-93. doi: 10.1158/1078-0432.CCR-07-4531.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验