Suppr超能文献

一种从有限样本大小估计大群体遗传多样性的简单方法。

A simple method for estimating genetic diversity in large populations from finite sample sizes.

机构信息

Canadian Genomics and Conservation Genetics Institute, University of New Brunswick, Faculty of Forestry and Environmental Management, Fredericton, NB, E3B 6C2, Canada.

出版信息

BMC Genet. 2009 Dec 16;10:84. doi: 10.1186/1471-2156-10-84.

Abstract

BACKGROUND

Sample size is one of the critical factors affecting the accuracy of the estimation of population genetic diversity parameters. Small sample sizes often lead to significant errors in determining the allelic richness, which is one of the most important and commonly used estimators of genetic diversity in populations. Correct estimation of allelic richness in natural populations is challenging since they often do not conform to model assumptions. Here, we introduce a simple and robust approach to estimate the genetic diversity in large natural populations based on the empirical data for finite sample sizes.

RESULTS

We developed a non-linear regression model to infer genetic diversity estimates in large natural populations from finite sample sizes. The allelic richness values predicted by our model were in good agreement with those observed in the simulated data sets and the true allelic richness observed in the source populations. The model has been validated using simulated population genetic data sets with different evolutionary scenarios implied in the simulated populations, as well as large microsatellite and allozyme experimental data sets for four conifer species with contrasting patterns of inherent genetic diversity and mating systems. Our model was a better predictor for allelic richness in natural populations than the widely-used Ewens sampling formula, coalescent approach, and rarefaction algorithm.

CONCLUSIONS

Our regression model was capable of accurately estimating allelic richness in natural populations regardless of the species and marker system. This regression modeling approach is free from assumptions and can be widely used for population genetic and conservation applications.

摘要

背景

样本量是影响群体遗传多样性参数估计准确性的关键因素之一。小样本量通常会导致等位基因丰富度的确定出现显著误差,而等位基因丰富度是群体遗传多样性最常用和最重要的估计量之一。由于自然种群通常不符合模型假设,因此正确估计自然种群中的等位基因丰富度具有挑战性。在这里,我们介绍了一种简单而稳健的方法,可基于有限样本量的经验数据来估计大型自然种群的遗传多样性。

结果

我们开发了一种非线性回归模型,可从有限样本量中推断大型自然种群的遗传多样性估计值。我们模型预测的等位基因丰富度值与模拟数据集以及源种群中观察到的真实等位基因丰富度值吻合良好。该模型已通过具有不同进化情景的模拟种群遗传数据集以及四个针叶树种的大型微卫星和同工酶实验数据集进行了验证,这些数据集具有不同的固有遗传多样性和交配系统模式。与广泛使用的Ewens 抽样公式、合并方法和稀有算法相比,我们的模型是自然种群中等位基因丰富度的更好预测因子。

结论

无论物种和标记系统如何,我们的回归模型都能够准确估计自然种群中的等位基因丰富度。这种回归建模方法没有假设,可以广泛用于群体遗传和保护应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a832/2800116/7dfae02435d9/1471-2156-10-84-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验