Suppr超能文献

揭示日常生活中的情感反应模式可能改善抑郁症的预后预测:一项即时评估研究。

Unveiling patterns of affective responses in daily life may improve outcome prediction in depression: a momentary assessment study.

机构信息

Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, Maastricht University, Maastricht, The Netherlands.

出版信息

J Affect Disord. 2010 Jul;124(1-2):191-5. doi: 10.1016/j.jad.2009.11.010. Epub 2009 Dec 14.

Abstract

OBJECTIVE

Daily life affective responses are closely linked to vulnerability and resilience in depression. Prediction of future clinical course may be improved if information on daily life emotional response patterns is taken into account.

METHOD

Female subjects with a history of major depression (n=83), recruited from a population twin register, participated in a longitudinal study using momentary assessment technology with 4 follow-up measurements. The effect of baseline daily life emotional response patterns (affect variability, stress-sensitivity and reward experience) on follow-up depressive symptomatology was examined.

RESULTS

Both reward experience (B=-0.30, p=0.001) and negative affect variability (B=0.46, p=0.001) predicted future negative affective symptoms independent of all other dynamic emotional patterns and conventional predictors.

CONCLUSION

Daily life information on dynamic emotional patterns adds to the prediction of future clinical course, independent of severity of symptoms and neuroticism score. Better prediction of course may improve decision-making regarding quantitative and qualitative aspects of treatment.

摘要

目的

日常生活中的情感反应与抑郁症的脆弱性和恢复力密切相关。如果考虑到日常生活中情绪反应模式的信息,可能会提高对未来临床病程的预测。

方法

从人群双胞胎登记处招募了有重度抑郁症病史的女性受试者(n=83),他们参加了一项使用即时评估技术的纵向研究,共进行了 4 次随访测量。研究考察了基线日常生活中的情绪反应模式(情感变化、压力敏感性和奖励体验)对随访时抑郁症状的影响。

结果

奖励体验(B=-0.30,p=0.001)和负性情感变化(B=0.46,p=0.001)独立于所有其他动态情感模式和常规预测因素,预测了未来的负性情感症状。

结论

日常生活中关于动态情感模式的信息增加了对未来临床病程的预测,独立于症状严重程度和神经质评分。更好的病程预测可以改善治疗的数量和质量方面的决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验