Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
J Phys Chem B. 2010 Apr 22;114(15):5016-24. doi: 10.1021/jp100922t.
We report here on the facile preparation of polymer-enzyme-multiwalled carbon nanotubes (MWCNTs) cast films accompanying in situ laccase (Lac)-catalyzed polymerization for electrochemical biosensing and biofuel cell applications. Lac-catalyzed polymerization of dopamine (DA) as a new substrate was examined in detail by UV-vis spectroscopy, cyclic voltammetry, quartz crystal microbalance, and scanning electron microscopy. Casting the aqueous mixture of DA, Lac and MWCNTs on a glassy carbon electrode (GCE) yielded a robust polydopamine (PDA)-Lac-MWCNTs/GCE that can sense hydroquinone with 643 microA mM(-1) cm(-2) sensitivity and 20-nM detection limit (S/N = 3). The DA substrate yielded the best biosensing performance, as compared with aniline, o-phenylenediamine, or o-aminophenol as the substrate for similar Lac-catalyzed polymerization. Casting the aqueous mixture of DA, glucose oxidase (GOx), Lac, and MWCNTs on a Pt electrode yielded a robust PDA-GOx-Lac-MWCNTs/Pt electrode that exhibits glucose-detection sensitivity of 68.6 microA mM(-1) cm(-2). In addition, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) was also coimmobilized to yield a PDA-Lac-MWCNTs-ABTS/GCE that can effectively catalyze the reduction of O(2), and it was successfully used as the biocathode of a membraneless glucose/O(2) biofuel cell (BFC) in pH 5.0 Britton-Robinson buffer. The proposed biomacromolecule-immobilization platform based on enzyme-catalyzed polymerization may be useful for preparing many other multifunctional polymeric bionanocomposites for wide applications.
我们在此报告一种简便的聚合物-酶-多壁碳纳米管(MWCNTs)铸膜的制备方法,同时伴随原位漆酶(Lac)催化聚合,可用于电化学生物传感和生物燃料电池应用。通过紫外-可见光谱、循环伏安法、石英晶体微天平以及扫描电子显微镜详细研究了多巴胺(DA)作为新底物的 Lac 催化聚合。在玻碳电极(GCE)上将 DA、Lac 和 MWCNTs 的水性混合物浇铸得到了坚固的聚多巴胺(PDA)-Lac-MWCNTs/GCE,该电极对邻苯二酚具有 643 μA mM(-1) cm(-2)的灵敏度和 20 nM 的检测限(S/N = 3)。与类似的 Lac 催化聚合中苯胺、邻苯二胺或邻氨基酚作为底物相比,DA 底物表现出最佳的生物传感性能。在 Pt 电极上将 DA、葡萄糖氧化酶(GOx)、Lac 和 MWCNTs 的水性混合物浇铸得到了坚固的 PDA-GOx-Lac-MWCNTs/Pt 电极,该电极对葡萄糖的检测灵敏度为 68.6 μA mM(-1) cm(-2)。此外,还共固定了 2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS),得到了 PDA-Lac-MWCNTs-ABTS/GCE,该电极可以有效地催化 O(2)的还原,并成功地用作无膜葡萄糖/O(2)生物燃料电池(BFC)在 pH 5.0 的 Britton-Robinson 缓冲液中的生物阴极。基于酶催化聚合的这种生物大分子固定化平台可能有助于制备许多其他用于广泛应用的多功能聚合物生物纳米复合材料。