Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02452, USA.
Cell. 2009 Dec 11;139(6):1109-18. doi: 10.1016/j.cell.2009.11.022.
Phosphorylation is a common mechanism for activating proteins within signaling pathways. Yet, the molecular transitions between the inactive and active conformational states are poorly understood. Here we quantitatively characterize the free-energy landscape of activation of a signaling protein, nitrogen regulatory protein C (NtrC), by connecting functional protein dynamics of phosphorylation-dependent activation to protein folding and show that only a rarely populated, pre-existing active conformation is energetically stabilized by phosphorylation. Using nuclear magnetic resonance (NMR) dynamics, we test an atomic scale pathway for the complex conformational transition, inferred from molecular dynamics simulations (Lei et al., 2009). The data show that the loss of native stabilizing contacts during activation is compensated by non-native transient atomic interactions during the transition. The results unravel atomistic details of native-state protein energy landscapes by expanding the knowledge about ground states to transition landscapes.
磷酸化是激活信号通路中蛋白质的常见机制。然而,非活性和活性构象之间的分子转变尚不清楚。在这里,我们通过将依赖于磷酸化的激活的功能性蛋白质动力学与蛋白质折叠连接起来,定量描述了信号蛋白氮调节蛋白 C(NtrC)的激活的自由能景观,并表明只有一种很少被占据的预先存在的活性构象被磷酸化稳定。使用核磁共振(NMR)动力学,我们根据分子动力学模拟(Lei 等人,2009)测试了一个复杂构象转变的原子尺度途径。数据表明,在激活过程中,天然稳定接触的丧失被过渡过程中的非天然瞬态原子相互作用所补偿。这些结果通过将关于基态的知识扩展到转变景观,揭示了天然状态蛋白质能量景观的原子细节。