Suppr超能文献

气味诱发神经振荡的频率转换。

Frequency transitions in odor-evoked neural oscillations.

机构信息

National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Neuron. 2009 Dec 10;64(5):692-706. doi: 10.1016/j.neuron.2009.10.004.

Abstract

In many species, sensory stimuli elicit the oscillatory synchronization of groups of neurons. What determines the properties of these oscillations? In the olfactory system of the moth, we found that odors elicited oscillatory synchronization through a neural mechanism like that described in locust and Drosophila. During responses to long odor pulses, oscillations suddenly slowed as net olfactory receptor neuron (ORN) output decreased; thus, stimulus intensity appeared to determine oscillation frequency. However, changing the concentration of the odor had little effect upon oscillatory frequency. Our recordings in vivo and computational models based on these results suggested that the main effect of increasing odor concentration was to recruit additional, less well-tuned ORNs whose firing rates were tightly constrained by adaptation and saturation. Thus, in the periphery, concentration is encoded mainly by the size of the responsive ORN population, and oscillation frequency is set by the adaptation and saturation of this response.

摘要

在许多物种中,感官刺激会引起神经元群体的振荡同步。那么,是什么决定了这些振荡的特性呢?在飞蛾的嗅觉系统中,我们发现气味通过一种类似于蝗虫和果蝇中描述的神经机制引发振荡同步。在对长气味脉冲的反应中,随着净嗅觉受体神经元(ORN)输出的减少,振荡突然减慢;因此,刺激强度似乎决定了振荡频率。然而,改变气味的浓度对振荡频率几乎没有影响。我们的体内记录和基于这些结果的计算模型表明,增加气味浓度的主要影响是招募更多的、调谐较差的 ORN,其发放率受到适应和饱和的严格限制。因此,在外周,浓度主要由反应性 ORN 群体的大小来编码,而振荡频率则由这种反应的适应和饱和来设定。

相似文献

1
Frequency transitions in odor-evoked neural oscillations.气味诱发神经振荡的频率转换。
Neuron. 2009 Dec 10;64(5):692-706. doi: 10.1016/j.neuron.2009.10.004.
9
Temporal coding of odor mixtures in an olfactory receptor neuron.气味混合物在嗅觉受体神经元中的时间编码。
Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):5075-80. doi: 10.1073/pnas.1100369108. Epub 2011 Mar 7.

引用本文的文献

4
Fly seizure EEG: field potential activity in the brain.飞行性癫痫的脑电图:大脑中的场电位活动。
J Neurogenet. 2021 Sep;35(3):295-305. doi: 10.1080/01677063.2021.1950714. Epub 2021 Jul 18.
5
Adaptive temporal processing of odor stimuli.气味刺激的自适应时间处理。
Cell Tissue Res. 2021 Jan;383(1):125-141. doi: 10.1007/s00441-020-03400-9. Epub 2021 Jan 6.
6
Odor Stimuli: Not Just Chemical Identity.气味刺激:不仅仅是化学特性。
Front Physiol. 2019 Nov 27;10:1428. doi: 10.3389/fphys.2019.01428. eCollection 2019.
9
Differential effects of adaptation on odor discrimination.适应对气味辨别能力的不同影响。
J Neurophysiol. 2018 Jul 1;120(1):171-185. doi: 10.1152/jn.00389.2017. Epub 2018 Mar 28.

本文引用的文献

1
Oscillations and synchrony in large-scale cortical network models.大规模皮层网络模型中的振荡与同步
J Biol Phys. 2008 Aug;34(3-4):279-99. doi: 10.1007/s10867-008-9079-y. Epub 2008 Jun 17.
3
Sparse odor representation and olfactory learning.稀疏气味表征与嗅觉学习。
Nat Neurosci. 2008 Oct;11(10):1177-84. doi: 10.1038/nn.2192. Epub 2008 Sep 14.
5
Olfactory coding with all-or-nothing glomeruli.全或无型肾小球的嗅觉编码。
J Neurophysiol. 2007 Dec;98(6):3134-42. doi: 10.1152/jn.00560.2007. Epub 2007 Sep 12.
7
Adaptive regulation of sparseness by feedforward inhibition.通过前馈抑制对稀疏性进行适应性调节。
Nat Neurosci. 2007 Sep;10(9):1176-84. doi: 10.1038/nn1947. Epub 2007 Jul 29.
10
Olfactory reactions in the brain of the hedgehog.刺猬大脑中的嗅觉反应。
J Physiol. 1942 Mar 31;100(4):459-73. doi: 10.1113/jphysiol.1942.sp003955.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验