Rulkov Nikolai F, Bazhenov Maxim
UCSD and Information Systems Labs. Inc., San Diego, CA, USA.
J Biol Phys. 2008 Aug;34(3-4):279-99. doi: 10.1007/s10867-008-9079-y. Epub 2008 Jun 17.
Intrinsic neuronal and circuit properties control the responses of large ensembles of neurons by creating spatiotemporal patterns of activity that are used for sensory processing, memory formation, and other cognitive tasks. The modeling of such systems requires computationally efficient single-neuron models capable of displaying realistic response properties. We developed a set of reduced models based on difference equations (map-based models) to simulate the intrinsic dynamics of biological neurons. These phenomenological models were designed to capture the main response properties of specific types of neurons while ensuring realistic model behavior across a sufficient dynamic range of inputs. This approach allows for fast simulations and efficient parameter space analysis of networks containing hundreds of thousands of neurons of different types using a conventional workstation. Drawing on results obtained using large-scale networks of map-based neurons, we discuss spatiotemporal cortical network dynamics as a function of parameters that affect synaptic interactions and intrinsic states of the neurons.
内在神经元和回路特性通过创建用于感觉处理、记忆形成及其他认知任务的时空活动模式来控制大量神经元群体的反应。对此类系统进行建模需要能够展示现实反应特性的计算高效的单神经元模型。我们基于差分方程开发了一组简化模型(基于映射的模型)来模拟生物神经元的内在动力学。这些唯象模型旨在捕捉特定类型神经元的主要反应特性,同时确保在足够宽的输入动态范围内具有现实的模型行为。这种方法能够利用传统工作站对包含数十万不同类型神经元的网络进行快速模拟和高效的参数空间分析。借鉴使用基于映射的神经元大规模网络所获得的结果,我们将讨论作为影响神经元突触相互作用和内在状态的参数函数的时空皮质网络动力学。