Suppr超能文献

大规模皮层网络模型中的振荡与同步

Oscillations and synchrony in large-scale cortical network models.

作者信息

Rulkov Nikolai F, Bazhenov Maxim

机构信息

UCSD and Information Systems Labs. Inc., San Diego, CA, USA.

出版信息

J Biol Phys. 2008 Aug;34(3-4):279-99. doi: 10.1007/s10867-008-9079-y. Epub 2008 Jun 17.

Abstract

Intrinsic neuronal and circuit properties control the responses of large ensembles of neurons by creating spatiotemporal patterns of activity that are used for sensory processing, memory formation, and other cognitive tasks. The modeling of such systems requires computationally efficient single-neuron models capable of displaying realistic response properties. We developed a set of reduced models based on difference equations (map-based models) to simulate the intrinsic dynamics of biological neurons. These phenomenological models were designed to capture the main response properties of specific types of neurons while ensuring realistic model behavior across a sufficient dynamic range of inputs. This approach allows for fast simulations and efficient parameter space analysis of networks containing hundreds of thousands of neurons of different types using a conventional workstation. Drawing on results obtained using large-scale networks of map-based neurons, we discuss spatiotemporal cortical network dynamics as a function of parameters that affect synaptic interactions and intrinsic states of the neurons.

摘要

内在神经元和回路特性通过创建用于感觉处理、记忆形成及其他认知任务的时空活动模式来控制大量神经元群体的反应。对此类系统进行建模需要能够展示现实反应特性的计算高效的单神经元模型。我们基于差分方程开发了一组简化模型(基于映射的模型)来模拟生物神经元的内在动力学。这些唯象模型旨在捕捉特定类型神经元的主要反应特性,同时确保在足够宽的输入动态范围内具有现实的模型行为。这种方法能够利用传统工作站对包含数十万不同类型神经元的网络进行快速模拟和高效的参数空间分析。借鉴使用基于映射的神经元大规模网络所获得的结果,我们将讨论作为影响神经元突触相互作用和内在状态的参数函数的时空皮质网络动力学。

相似文献

1
Oscillations and synchrony in large-scale cortical network models.
J Biol Phys. 2008 Aug;34(3-4):279-99. doi: 10.1007/s10867-008-9079-y. Epub 2008 Jun 17.
2
Oscillations in large-scale cortical networks: map-based model.
J Comput Neurosci. 2004 Sep-Oct;17(2):203-23. doi: 10.1023/B:JCNS.0000037683.55688.7e.
4
The number of synaptic inputs and the synchrony of large, sparse neuronal networks.
Neural Comput. 2000 May;12(5):1095-139. doi: 10.1162/089976600300015529.
6
Evolving Simple Models of Diverse Intrinsic Dynamics in Hippocampal Neuron Types.
Front Neuroinform. 2018 Mar 13;12:8. doi: 10.3389/fninf.2018.00008. eCollection 2018.
7
8
Neuronal Switching between Single- and Dual-Network Activity via Modulation of Intrinsic Membrane Properties.
J Neurosci. 2021 Sep 15;41(37):7848-7863. doi: 10.1523/JNEUROSCI.0286-21.2021. Epub 2021 Aug 4.
9
Chaos and synchrony in a model of a hypercolumn in visual cortex.
J Comput Neurosci. 1996 Mar;3(1):7-34. doi: 10.1007/BF00158335.

引用本文的文献

3
Coherent olfactory bulb gamma oscillations arise from coupling independent columnar oscillators.
J Neurophysiol. 2024 Mar 1;131(3):492-508. doi: 10.1152/jn.00361.2023. Epub 2024 Jan 24.
5
Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation.
PLoS Comput Biol. 2022 Nov 18;18(11):e1010628. doi: 10.1371/journal.pcbi.1010628. eCollection 2022 Nov.
6
Optimality of sparse olfactory representations is not affected by network plasticity.
PLoS Comput Biol. 2020 Feb 3;16(2):e1007461. doi: 10.1371/journal.pcbi.1007461. eCollection 2020 Feb.
7
Simulating human sleep spindle MEG and EEG from ion channel and circuit level dynamics.
J Neurosci Methods. 2019 Mar 15;316:46-57. doi: 10.1016/j.jneumeth.2018.10.002. Epub 2018 Oct 6.
8
New class of reduced computationally efficient neuronal models for large-scale simulations of brain dynamics.
J Comput Neurosci. 2018 Feb;44(1):1-24. doi: 10.1007/s10827-017-0663-7. Epub 2017 Dec 12.
9
Collective behavior of large-scale neural networks with GPU acceleration.
Cogn Neurodyn. 2017 Dec;11(6):553-563. doi: 10.1007/s11571-017-9446-0. Epub 2017 Jun 30.
10
A coupled-oscillator model of olfactory bulb gamma oscillations.
PLoS Comput Biol. 2017 Nov 15;13(11):e1005760. doi: 10.1371/journal.pcbi.1005760. eCollection 2017 Nov.

本文引用的文献

1
Simple model of spiking neurons.
IEEE Trans Neural Netw. 2003;14(6):1569-72. doi: 10.1109/TNN.2003.820440.
2
Adaptive regulation of sparseness by feedforward inhibition.
Nat Neurosci. 2007 Sep;10(9):1176-84. doi: 10.1038/nn1947. Epub 2007 Jul 29.
3
Role of network dynamics in shaping spike timing reliability.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 1):041903. doi: 10.1103/PhysRevE.72.041903. Epub 2005 Oct 5.
4
Self-organization in the olfactory system: one shot odor recognition in insects.
Biol Cybern. 2005 Dec;93(6):436-46. doi: 10.1007/s00422-005-0019-7. Epub 2005 Nov 18.
5
Synchronized chaotic intermittent and spiking behavior in coupled map chains.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 2):056209. doi: 10.1103/PhysRevE.71.056209. Epub 2005 May 24.
6
Neural mechanisms of visual associative processing.
Acta Neurobiol Exp (Wars). 2004;64(2):239-52. doi: 10.55782/ane-2004-1509.
7
Oscillations in large-scale cortical networks: map-based model.
J Comput Neurosci. 2004 Sep-Oct;17(2):203-23. doi: 10.1023/B:JCNS.0000037683.55688.7e.
8
Transient activation in a network of coupled map neurons.
Phys Rev Lett. 2003 Nov 14;91(20):208102. doi: 10.1103/PhysRevLett.91.208102. Epub 2003 Nov 10.
9
A multi-channel correlation method detects traveling gamma-waves in monkey visual cortex.
J Neurosci Methods. 2003 Dec 30;131(1-2):171-84. doi: 10.1016/j.jneumeth.2003.08.008.
10
Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses.
J Neurosci. 2003 Oct 22;23(29):9664-74. doi: 10.1523/JNEUROSCI.23-29-09664.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验