National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Neurosci. 2010 Feb 10;30(6):1994-2006. doi: 10.1523/JNEUROSCI.5639-09.2010.
Odorants are represented as spatiotemporal patterns of spikes in neurons of the antennal lobe (AL; insects) and olfactory bulb (OB; vertebrates). These response patterns have been thought to arise primarily from interactions within the AL/OB, an idea supported, in part, by the assumption that olfactory receptor neurons (ORNs) respond to odorants with simple firing patterns. However, activating the AL directly with simple pulses of current evoked responses in AL neurons that were much less diverse, complex, and enduring than responses elicited by odorants. Similarly, models of the AL driven by simplistic inputs generated relatively simple output. How then are dynamic neural codes for odors generated? Consistent with recent results from several other species, our recordings from locust ORNs showed a great diversity of temporal structure. Furthermore, we found that, viewed as a population, many response features of ORNs were remarkably similar to those observed within the AL. Using a set of computational models constrained by our electrophysiological recordings, we found that the temporal heterogeneity of responses of ORNs critically underlies the generation of spatiotemporal odor codes in the AL. A test then performed in vivo confirmed that, given temporally homogeneous input, the AL cannot create diverse spatiotemporal patterns on its own; however, given temporally heterogeneous input, the AL generated realistic firing patterns. Finally, given the temporally structured input provided by ORNs, we clarified several separate, additional contributions of the AL to olfactory information processing. Thus, our results demonstrate the origin and subsequent reformatting of spatiotemporal neural codes for odors.
气味被表示为触角叶(AL;昆虫)和嗅球(OB;脊椎动物)神经元中尖峰的时空模式。这些反应模式主要被认为是由 AL/OB 内的相互作用产生的,部分原因是假设嗅觉受体神经元(ORNs)对气味的反应具有简单的发射模式。然而,用简单的电流脉冲直接激活 AL 会在 AL 神经元中诱发与气味诱发的反应相比差异更小、更复杂和更持久的反应。同样,由简单输入驱动的 AL 模型产生的输出相对简单。那么,动态气味神经代码是如何产生的呢?与最近来自其他几个物种的结果一致,我们对蝗虫 ORNs 的记录显示出了很大的时间结构多样性。此外,我们发现,从群体的角度来看,许多 ORN 的反应特征与在 AL 中观察到的特征非常相似。使用一组受我们电生理记录约束的计算模型,我们发现 ORNs 反应的时间异质性是在 AL 中产生时空气味代码的关键。然后在体内进行的测试证实,给定时间均匀的输入,AL 本身无法创建多样化的时空模式;但是,给定时间异质的输入,AL 会生成逼真的发射模式。最后,考虑到 ORNs 提供的时间结构输入,我们澄清了 AL 对嗅觉信息处理的几个单独的、额外的贡献。因此,我们的结果表明了气味时空神经代码的起源和随后的重新格式化。