Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Mol Cell. 2009 Dec 11;36(5):845-60. doi: 10.1016/j.molcel.2009.11.024.
Hydroxyurea (HU) specifically inhibits class I ribonucleotide reductase (RNR), depleting dNTP pools and leading to replication fork arrest. Although HU inhibition of RNR is well recognized, the mechanism by which it leads to cell death remains unknown. To investigate the mechanism of HU-induced cell death, we used a systems-level approach to determine the genomic and physiological responses of E. coli to HU treatment. Our results suggest a model by which HU treatment rapidly induces a set of protective responses to manage genomic instability. Continued HU stress activates iron uptake and toxins MazF and RelE, whose activity causes the synthesis of incompletely translated proteins and stimulation of envelope stress responses. These effects alter the properties of one of the cell's terminal cytochrome oxidases, causing an increase in superoxide production. The increased superoxide production, together with the increased iron uptake, fuels the formation of hydroxyl radicals that contribute to HU-induced cell death.
羟基脲 (HU) 特异性抑制 I 类核糖核苷酸还原酶 (RNR),耗尽 dNTP 池,导致复制叉停滞。尽管 HU 对 RNR 的抑制作用已得到广泛认可,但导致细胞死亡的机制仍不清楚。为了研究 HU 诱导细胞死亡的机制,我们采用系统水平的方法来确定大肠杆菌对 HU 处理的基因组和生理反应。我们的结果提出了一个模型,即 HU 处理可迅速诱导一组保护性反应来应对基因组不稳定性。持续的 HU 应激激活铁摄取和毒素 MazF 和 RelE,其活性导致不完全翻译的蛋白质合成和 envelope 应激反应的刺激。这些效应改变了细胞内一个末端细胞色素氧化酶的特性,导致超氧化物产生增加。增加的超氧化物产生,加上铁摄取的增加,促进了羟基自由基的形成,这有助于 HU 诱导的细胞死亡。