Suppr超能文献

羟基脲诱导的细胞周期停滞的改良机制及其改进的替代方案。

Revised mechanism of hydroxyurea-induced cell cycle arrest and an improved alternative.

机构信息

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80525.

Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.

出版信息

Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2404470121. doi: 10.1073/pnas.2404470121. Epub 2024 Oct 7.

Abstract

Replication stress describes endogenous and exogenous challenges to DNA replication in the S-phase. Stress during this critical process causes helicase-polymerase decoupling at replication forks, triggering the S-phase checkpoint, which orchestrates global replication fork stalling and delayed entry into G2. The replication stressor most often used to induce the checkpoint response in yeast is hydroxyurea (HU), a clinically used chemotherapeutic. The primary mechanism of S-phase checkpoint activation by HU has thus far been considered to be a reduction of deoxynucleotide triphosphate synthesis by inhibition of ribonucleotide reductase (RNR), leading to helicase-polymerase decoupling and subsequent activation of the checkpoint, facilitated by the replisome-associated mediator Mrc1. In contrast, we observe that HU causes cell cycle arrest in budding yeast independent of both the Mrc1-mediated replication checkpoint response and the Psk1-Mrc1 oxidative signaling pathway. We demonstrate a direct relationship between HU incubation and reactive oxygen species (ROS) production in yeast and human cells and show that antioxidants restore growth of yeast in HU. We further observe that ROS strongly inhibits the in vitro polymerase activity of replicative polymerases (Pols), Pol α, Pol δ, and Pol ε, causing polymerase complex dissociation and subsequent loss of DNA substrate binding, likely through oxidation of their integral iron-sulfur (Fe-S) clusters. Finally, we present "RNR-deg," a genetically engineered alternative to HU in yeast with greatly increased specificity of RNR inhibition, allowing researchers to achieve fast, nontoxic, and more readily reversible checkpoint activation compared to HU, avoiding harmful ROS generation and associated downstream cellular effects that may confound interpretation of results.

摘要

复制压力描述了 S 期内 DNA 复制的内源性和外源性挑战。在这个关键过程中,压力会导致解旋酶-聚合酶在复制叉处解耦,触发 S 期检查点,从而协调全局复制叉停滞和延迟进入 G2 期。在酵母中最常用来诱导检查点反应的复制压力物是羟基脲 (HU),这是一种临床上使用的化疗药物。迄今为止,HU 激活 S 期检查点的主要机制被认为是通过抑制核糖核苷酸还原酶 (RNR) 来减少脱氧核苷酸三磷酸的合成,导致解旋酶-聚合酶解耦,随后通过与复制体相关的介体 Mrc1 激活检查点。相比之下,我们观察到 HU 会导致芽殖酵母的细胞周期停滞,这与 Mrc1 介导的复制检查点反应和 Psk1-Mrc1 氧化信号通路无关。我们证明了 HU 在酵母和人类细胞中与活性氧 (ROS) 产生之间存在直接关系,并表明抗氧化剂可以恢复 HU 中酵母的生长。我们进一步观察到,ROS 强烈抑制了复制聚合酶 (Pols) Pol α、Pol δ 和 Pol ε 的体外聚合酶活性,导致聚合酶复合物解离,随后失去 DNA 底物结合,这可能是通过其完整的铁硫 (Fe-S) 簇的氧化。最后,我们提出了“RNR-deg”,这是一种在酵母中替代 HU 的基因工程方法,对 RNR 的抑制具有更高的特异性,使研究人员能够实现比 HU 更快、无毒且更易于逆转的检查点激活,避免产生有害的 ROS 及其相关的下游细胞效应,这可能会混淆结果的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b5e/11494364/9cc3bdcd537d/pnas.2404470121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验