Suppr超能文献

独立成分分析方法在抑郁障碍早期阶段 EEG 记录中的应用。

Independent component approach to the analysis of EEG recordings at early stages of depressive disorders.

机构信息

Laboratory of Neurobiology of Action Programming, Institute of the Human Brain of Russian Academy of Sciences, St. Petersburg, ul. Acad. Pavlova, Russian Federation.

出版信息

Clin Neurophysiol. 2010 Mar;121(3):281-9. doi: 10.1016/j.clinph.2009.11.015. Epub 2009 Dec 16.

Abstract

OBJECTIVE

A modern approach for blind source separation of electrical activity represented by Independent Components Analysis (ICA) was used for QEEG analysis in depression.

METHODS

The spectral characteristics of the resting EEG in 111 adults in the early stages of depression and 526 non-depressed subjects were compared between groups of patients and healthy controls using a combination of ICA and sLORETA methods.

RESULTS

Comparison of the power of independent components in depressed patients and healthy controls have revealed significant differences between groups for three frequency bands: theta (4-7.5Hz), alpha (7.5-14Hz), and beta (14-20Hz) both in Eyes closed and Eyes open conditions. An increase in slow (theta and alpha) activity in depressed patients at parietal and occipital sites may reflect a decreased cortical activation in these brain regions, and a diffuse enhancement of beta power may correlate with anxiety symptoms playing an important role on the onset of depressive disorder.

CONCLUSIONS

ICA approach used in the present study allowed us to localize the EEG spectra differences between the two groups.

SIGNIFICANCE

A relatively rare approach which uses the ICA spectra for comparison of the quantitative parameters of EEG in different groups of patients/subjects allows to improve an accuracy of measurement.

摘要

目的

采用独立成分分析(ICA)为盲源分离的现代方法对抑郁的 QEEG 进行分析。

方法

采用 ICA 和 sLORETA 方法相结合,比较了 111 例早期抑郁症患者和 526 例非抑郁患者静息状态 EEG 的频谱特征。

结果

在闭眼和睁眼两种状态下,与健康对照组相比,三组频带(θ波 4-7.5Hz、α波 7.5-14Hz、β波 14-20Hz)的独立成分的功率在抑郁症患者中存在显著差异。在顶叶和枕叶部位,抑郁患者的慢波(θ波和α波)活动增加,可能反映了这些脑区皮质激活减少,而β波功率的弥漫增强可能与焦虑症状有关,对抑郁障碍的发生起着重要作用。

结论

本研究中使用的 ICA 方法使我们能够定位两组之间的 EEG 频谱差异。

意义

一种相对罕见的方法,使用 ICA 频谱比较不同患者/组的 EEG 定量参数,可以提高测量的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验