Suppr超能文献

从源和电极角度探讨非周期性和周期性 EEG 成分对重度抑郁症分类的影响。

Implications of Aperiodic and Periodic EEG Components in Classification of Major Depressive Disorder from Source and Electrode Perspectives.

机构信息

School of Electrical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran.

Electrical and Electronic Engineering Department, Imperial College London, London SW7 2AZ, UK.

出版信息

Sensors (Basel). 2024 Sep 21;24(18):6103. doi: 10.3390/s24186103.

Abstract

Electroencephalography (EEG) is useful for studying brain activity in major depressive disorder (MDD), particularly focusing on theta and alpha frequency bands via power spectral density (PSD). However, PSD-based analysis has often produced inconsistent results due to difficulties in distinguishing between periodic and aperiodic components of EEG signals. We analyzed EEG data from 114 young adults, including 74 healthy controls (HCs) and 40 MDD patients, assessing periodic and aperiodic components alongside conventional PSD at both source and electrode levels. Machine learning algorithms classified MDD versus HC based on these features. Sensor-level analysis showed stronger Hedge's g effect sizes for parietal theta and frontal alpha activity than source-level analysis. MDD individuals exhibited reduced theta and alpha activity relative to HC. Logistic regression-based classifications showed that periodic components slightly outperformed PSD, with the best results achieved by combining periodic and aperiodic features (AUC = 0.82). Strong negative correlations were found between reduced periodic parietal theta and frontal alpha activities and higher scores on the Beck Depression Inventory, particularly for the anhedonia subscale. This study emphasizes the superiority of sensor-level over source-level analysis for detecting MDD-related changes and highlights the value of incorporating both periodic and aperiodic components for a more refined understanding of depressive disorders.

摘要

脑电图(EEG)在研究重度抑郁症(MDD)中的大脑活动方面很有用,特别是通过功率谱密度(PSD)专注于θ和α频段。然而,由于难以区分 EEG 信号的周期性和非周期性成分,基于 PSD 的分析经常产生不一致的结果。我们分析了来自 114 名年轻成年人的 EEG 数据,包括 74 名健康对照(HC)和 40 名 MDD 患者,在源和电极水平上评估了周期性和非周期性成分以及常规 PSD。机器学习算法根据这些特征对 MDD 与 HC 进行分类。传感器水平分析显示,与源水平分析相比,顶叶θ和额α活动的 Hedge's g 效应大小更强。与 HC 相比,MDD 个体表现出θ和α活动减少。基于逻辑回归的分类表明,周期性成分略优于 PSD,将周期性和非周期性特征相结合可获得最佳结果(AUC = 0.82)。在贝克抑郁量表上得分较高的个体中,减少的周期性顶叶θ和额α活动之间存在强烈的负相关,特别是在快感缺失子量表上。这项研究强调了传感器水平分析优于源水平分析,可用于检测与 MDD 相关的变化,并强调了结合周期性和非周期性成分对于更精细地理解抑郁障碍的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe0/11436117/e1cf800c5799/sensors-24-06103-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验