Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
Neuroimage. 2010 Mar;50(1):40-7. doi: 10.1016/j.neuroimage.2009.12.030. Epub 2009 Dec 16.
Computing phase-locking values (PLVs) between EEG signals is becoming a popular measure for quantifying functional connectivity, because it affords a more detailed picture of the synchrony relationships between channels at different times and frequencies. However, the accompanying increase in data dimensionality incurs a serious multiple testing problem for determining PLV significance. Standard methods for controlling Type I error, which treat all hypotheses as belonging to a single family, can fail to detect any significant discoveries. Instead, we propose a novel application of a hierarchical FDR method, which subsumes multiple families, for detecting significant PLV effects. For simulations and experimental data, we show that the proposed hierarchical FDR method is most powerful. This method revealed significant synchrony effects in the expected regions at an acceptable error rate of 5%, where other methods, including standard FDR correction failed to reveal any significant effects.
计算脑电信号之间的锁相值(PLV)正成为量化功能连接的一种流行方法,因为它提供了在不同时间和频率下通道之间同步关系的更详细图像。然而,随之而来的数据维度的增加导致确定 PLV 显著性的严重多重检验问题。控制 I 型错误的标准方法,将所有假设视为属于单个家族,可能无法检测到任何显著的发现。相反,我们提出了一种新颖的层次 FDR 方法的应用,该方法包含多个家族,用于检测显著的 PLV 效应。对于模拟和实验数据,我们表明,所提出的层次 FDR 方法最有效。这种方法在可接受的 5%错误率下,在预期区域揭示了显著的同步效应,而其他方法,包括标准 FDR 校正,未能揭示任何显著效应。