Institut für Zellbiologie, Universität Bayreuth, Bayreuth, Germany.
Semin Cell Dev Biol. 2010 Aug;21(6):542-9. doi: 10.1016/j.semcdb.2009.12.003. Epub 2009 Dec 17.
Mitochondrial fusion and fission are important for a great variety of cellular functions, including energy metabolism, development, aging and cell death. Many of the core components mediating mitochondrial dynamics in human cells have been first identified and mechanistically analyzed in model organisms, such as Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In particular, the functions of FZO/mitofusin and Mgm1/EAT-3/OPA1 in fusion and Dnm1/DRP1 in fission have been remarkably well conserved in yeasts, worms, flies and mammals. On the other hand, mechanisms to coordinate and regulate the activity of these molecular machines appear to be more diverse in different organisms. Here, I will discuss how S. cerevisiae, C. elegans and Drosophila have contributed to our current understanding of the cellular machineries mediating the dynamic behaviour of mitochondria.
线粒体融合和裂变对于多种细胞功能至关重要,包括能量代谢、发育、衰老和细胞死亡。许多介导人类细胞中线粒体动力学的核心成分首先在模式生物中被鉴定出来,并从机制上进行了分析,如酿酒酵母、秀丽隐杆线虫和黑腹果蝇。特别是 FZO/线粒体融合蛋白和 Mgm1/EAT-3/OPA1 在融合中的作用以及 Dnm1/DRP1 在裂变中的作用在酵母、线虫、果蝇和哺乳动物中都得到了很好的保守。另一方面,协调和调节这些分子机器活性的机制在不同的生物体中似乎更加多样化。在这里,我将讨论酿酒酵母、秀丽隐杆线虫和黑腹果蝇如何帮助我们理解介导线粒体动态行为的细胞机制。