Suppr超能文献

线粒体动力学的破坏会影响秀丽隐杆线虫的行为和寿命。

Disruption of mitochondrial dynamics affects behaviour and lifespan in Caenorhabditis elegans.

机构信息

Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.

Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne, VIC, 3800, Australia.

出版信息

Cell Mol Life Sci. 2019 May;76(10):1967-1985. doi: 10.1007/s00018-019-03024-5. Epub 2019 Mar 6.

Abstract

Mitochondria are essential components of eukaryotic cells, carrying out critical physiological processes that include energy production and calcium buffering. Consequently, mitochondrial dysfunction is associated with a range of human diseases. Fundamental to their function is the ability to transition through fission and fusion states, which is regulated by several GTPases. Here, we have developed new methods for the non-subjective quantification of mitochondrial morphology in muscle and neuronal cells of Caenorhabditis elegans. Using these techniques, we uncover surprising tissue-specific differences in mitochondrial morphology when fusion or fission proteins are absent. From ultrastructural analysis, we reveal a novel role for the fusion protein FZO-1/mitofusin 2 in regulating the structure of the inner mitochondrial membrane. Moreover, we have determined the influence of the individual mitochondrial fission (DRP-1/DRP1) and fusion (FZO-1/mitofusin 1,2; EAT-3/OPA1) proteins on animal behaviour and lifespan. We show that loss of these mitochondrial fusion or fission regulators induced age-dependent and progressive deficits in animal movement, as well as in muscle and neuronal function. Our results reveal that disruption of fusion induces more profound defects than lack of fission on animal behaviour and tissue function, and imply that while fusion is required throughout life, fission is more important later in life likely to combat ageing-associated stressors. Furthermore, our data demonstrate that mitochondrial function is not strictly dependent on morphology, with no correlation found between morphological changes and behavioural defects. Surprisingly, we find that disruption of either mitochondrial fission or fusion significantly reduces median lifespan, but maximal lifespan is unchanged, demonstrating that mitochondrial dynamics play an important role in limiting variance in longevity across isogenic populations. Overall, our study provides important new insights into the central role of mitochondrial dynamics in maintaining organismal health.

摘要

线粒体是真核细胞的重要组成部分,执行着包括能量产生和钙缓冲在内的关键生理过程。因此,线粒体功能障碍与一系列人类疾病有关。它们的功能基础是通过裂变和融合状态进行转换的能力,这由几种 GTPases 调节。在这里,我们开发了新的方法来非主观地量化秀丽隐杆线虫肌肉和神经元细胞中的线粒体形态。使用这些技术,我们发现当融合或裂变蛋白缺失时,线粒体形态存在惊人的组织特异性差异。从超微结构分析中,我们揭示了融合蛋白 FZO-1/线粒体融合蛋白 2 调节线粒体内部膜结构的新作用。此外,我们已经确定了单个线粒体裂变(DRP-1/DRP1)和融合(FZO-1/线粒体融合蛋白 1、2;EAT-3/OPA1)蛋白对动物行为和寿命的影响。我们表明,这些线粒体融合或裂变调节剂的缺失会导致动物运动以及肌肉和神经元功能的年龄依赖性和进行性缺陷。我们的结果表明,融合的破坏比裂变的缺乏对动物行为和组织功能的影响更为严重,这意味着融合在整个生命过程中是必需的,而裂变在生命后期更为重要,可能是为了对抗与衰老相关的应激源。此外,我们的数据表明,线粒体功能并不严格依赖于形态,形态变化与行为缺陷之间没有相关性。令人惊讶的是,我们发现线粒体裂变或融合的破坏都会显著降低中位寿命,但最大寿命不变,这表明线粒体动力学在限制同基因群体中寿命变异性方面起着重要作用。总的来说,我们的研究为线粒体动力学在维持机体健康方面的核心作用提供了重要的新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb0d/11105422/ab61a1d69eca/18_2019_3024_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验