Suppr超能文献

自由基对磁受体中的无序和运动的影响。

Effects of disorder and motion in a radical pair magnetoreceptor.

机构信息

Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.

出版信息

J R Soc Interface. 2010 Apr 6;7 Suppl 2(Suppl 2):S257-64. doi: 10.1098/rsif.2009.0399.focus. Epub 2009 Dec 9.

Abstract

A critical requirement in the proposed chemical model of the avian magnetic compass is that the molecules that play host to the magnetically sensitive radical pair intermediates must be immobilized and rotationally ordered within receptor cells. Rotational disorder would cause the anisotropic responses of differently oriented radical pairs within the same cell to interfere destructively, while rapid molecular rotation would tend to average the crucial anisotropic magnetic interactions and induce electron spin relaxation, reducing the sensitivity to the direction of the geomagnetic field. So far, experimental studies have been able to shed little light on the required degree of ordering and immobilization. To address this question, computer simulations have been performed on a collection of radical pairs undergoing restricted rigid-body rotation, coherent anisotropic spin evolution, electron spin relaxation and spin-selective recombination reactions. It is shown that the ordering and motional constraints necessary for efficient magnetoreception can be simultaneously satisfied if the radical pairs are uniaxially ordered with a moderate order parameter and if their motional correlation time is longer than about a quarter of their lifetime.

摘要

在鸟类磁场罗盘的拟议化学模型中,一个关键要求是,充当磁敏自由基对中间体宿主的分子必须在受体细胞内固定和旋转有序。旋转无序会导致同一细胞内不同取向的自由基对的各向异性响应产生破坏性干扰,而快速分子旋转则会倾向于平均关键各向异性磁相互作用并诱导电子自旋弛豫,从而降低对地磁场方向的敏感性。到目前为止,实验研究还未能阐明所需的有序化和固定化程度。为了解决这个问题,对一系列经历受限刚体旋转、相干各向异性自旋演化、电子自旋弛豫和自旋选择重组反应的自由基对进行了计算机模拟。结果表明,如果自由基对具有中等有序参数的单轴有序,并且其运动相关时间长于其寿命的约四分之一,则可以同时满足有效磁受体所需的有序化和运动约束。

相似文献

1
Effects of disorder and motion in a radical pair magnetoreceptor.
J R Soc Interface. 2010 Apr 6;7 Suppl 2(Suppl 2):S257-64. doi: 10.1098/rsif.2009.0399.focus. Epub 2009 Dec 9.
2
Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception.
J Chem Phys. 2016 Jul 21;145(3):035104. doi: 10.1063/1.4958624.
3
Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes.
J R Soc Interface. 2012 Dec 7;9(77):3329-37. doi: 10.1098/rsif.2012.0374. Epub 2012 Sep 12.
5
The quantum needle of the avian magnetic compass.
Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):4634-9. doi: 10.1073/pnas.1600341113. Epub 2016 Apr 4.
6
Electron spin relaxation in cryptochrome-based magnetoreception.
Phys Chem Chem Phys. 2016 May 14;18(18):12443-56. doi: 10.1039/c5cp06731f. Epub 2016 Mar 29.
8
Alternative radical pairs for cryptochrome-based magnetoreception.
J R Soc Interface. 2014 Mar 26;11(95):20131063. doi: 10.1098/rsif.2013.1063. Print 2014 Jun 6.
9
Radical-Pair-Based Magnetoreception Amplified by Radical Scavenging: Resilience to Spin Relaxation.
J Phys Chem B. 2017 Nov 9;121(44):10215-10227. doi: 10.1021/acs.jpcb.7b07672. Epub 2017 Oct 26.
10
How quantum is radical pair magnetoreception?
Faraday Discuss. 2019 Dec 16;221(0):77-91. doi: 10.1039/c9fd00049f.

引用本文的文献

2
Cryptochrome magnetoreception: Time course of photoactivation from non-equilibrium coarse-grained molecular dynamics.
Comput Struct Biotechnol J. 2024 Nov 10;26:58-69. doi: 10.1016/j.csbj.2024.11.001. eCollection 2024 Dec.
3
Simple rules for resolved level-crossing spectra in magnetic field effects on reaction yields.
Magn Reson (Gott). 2021 Apr 6;2(1):77-91. doi: 10.5194/mr-2-77-2021. eCollection 2021.
4
Isotope Substitution Effects on the Magnetic Compass Properties of Cryptochrome-Based Radical Pairs: A Computational Study.
J Phys Chem B. 2023 Feb 2;127(4):838-845. doi: 10.1021/acs.jpcb.2c05335. Epub 2023 Jan 20.
5
Double cones in the avian retina form an oriented mosaic which might facilitate magnetoreception and/or polarized light sensing.
J R Soc Interface. 2022 Apr;19(189):20210877. doi: 10.1098/rsif.2021.0877. Epub 2022 Apr 13.
6
Cryptochrome magnetoreception: four tryptophans could be better than three.
J R Soc Interface. 2021 Nov;18(184):20210601. doi: 10.1098/rsif.2021.0601. Epub 2021 Nov 10.
7
Cryptochrome expression in avian UV cones: revisiting the role of CRY1 as magnetoreceptor.
Sci Rep. 2021 Jun 16;11(1):12683. doi: 10.1038/s41598-021-92056-8.
9
Magnetoreception of Photoactivated Cryptochrome 1 in Electrochemistry and Electron Transfer.
ACS Omega. 2018 May 1;3(5):4752-4759. doi: 10.1021/acsomega.8b00645. eCollection 2018 May 31.
10
An open quantum system approach to the radical pair mechanism.
Sci Rep. 2018 Oct 24;8(1):15719. doi: 10.1038/s41598-018-34007-4.

本文引用的文献

1
Quantum Zeno effect explains magnetic-sensitive radical-ion-pair reactions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 2):056115. doi: 10.1103/PhysRevE.80.056115. Epub 2009 Nov 24.
2
Visual but not trigeminal mediation of magnetic compass information in a migratory bird.
Nature. 2009 Oct 29;461(7268):1274-7. doi: 10.1038/nature08528.
3
Magnetoreception through cryptochrome may involve superoxide.
Biophys J. 2009 Jun 17;96(12):4804-13. doi: 10.1016/j.bpj.2009.03.048.
4
Magnetic compass of birds is based on a molecule with optimal directional sensitivity.
Biophys J. 2009 Apr 22;96(8):3451-7. doi: 10.1016/j.bpj.2008.11.072.
5
Chemical magnetoreception in birds: the radical pair mechanism.
Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):353-60. doi: 10.1073/pnas.0711968106. Epub 2009 Jan 7.
6
Magnetic-field effect on the photoactivation reaction of Escherichia coli DNA photolyase.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14395-9. doi: 10.1073/pnas.0803620105. Epub 2008 Sep 17.
7
Chemical compass model of avian magnetoreception.
Nature. 2008 May 15;453(7193):387-90. doi: 10.1038/nature06834. Epub 2008 Apr 30.
8
Magnetic compass of European robins.
Science. 1972 Apr 7;176(4030):62-4. doi: 10.1126/science.176.4030.62.
9
On the use of magnets to disrupt the physiological compass of birds.
Phys Biol. 2006 Oct 4;3(3):220-31. doi: 10.1088/1478-3975/3/3/007.
10
Magnetoreception.
Bioessays. 2006 Feb;28(2):157-68. doi: 10.1002/bies.20363.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验