Suppr超能文献

隐花色素磁受体:基于非平衡粗粒化分子动力学的光激活时间进程

Cryptochrome magnetoreception: Time course of photoactivation from non-equilibrium coarse-grained molecular dynamics.

作者信息

Ramsay Jessica L, Schuhmann Fabian, Solov'yov Ilia A, Kattnig Daniel R

机构信息

Department of Physics, University of Exeter, Stocker Rd., Exeter EX4 4QL, UK.

Living Systems Institute, University of Exeter, Stocker Rd., Exeter EX4 4QD, UK.

出版信息

Comput Struct Biotechnol J. 2024 Nov 10;26:58-69. doi: 10.1016/j.csbj.2024.11.001. eCollection 2024 Dec.

Abstract

Magnetoreception, the ability to sense magnetic fields, is widespread in animals but remains poorly understood. The leading model links this ability in migratory birds to the photo-activation of the protein cryptochrome. Magnetic information is thought to induce structural changes in cryptochrome via a transient radical pair intermediate. This signal transduction pathway has been the subject of previous all-atom molecular dynamics (MD) simulations, but insights were limited to short timescales and equilibrium structures. To address this, we developed a non-equilibrium coarse-grained MD simulation approach, exploring cryptochrome's photo-reduction over 20 replicates of 20 µs each. Our results revealed significant structural changes across the protein, with an overall time constant of 3 µs. The C-terminal (CT) region responded on a timescale of 4.7 µs, followed by the EEE-motif, while the phosphate binding loop (PBL) showed slower dynamics (9 µs). Network analysis highlighted direct pathways connecting the tryptophan tetrad to the CT, and distant pathways involving the EEE and PBL regions. The CT-dynamics are significantly impacted by a rearrangement of tryptophan residues in the central electron transfer chain. Our findings underscore the importance of considering longer timescales when studying cryptochrome magnetoreception and highlight the potential of non-equilibrium coarse-grained MD simulations as a powerful tool to unravel protein photoactivation reactions.

摘要

磁感受,即感知磁场的能力,在动物中广泛存在,但人们对其了解仍然很少。主流模型将候鸟的这种能力与蛋白质隐花色素的光激活联系起来。磁信息被认为通过瞬态自由基对中间体诱导隐花色素的结构变化。这条信号转导途径一直是先前全原子分子动力学(MD)模拟的主题,但见解仅限于短时间尺度和平衡结构。为了解决这个问题,我们开发了一种非平衡粗粒度MD模拟方法,在20次重复模拟中,每次模拟20微秒,探索隐花色素的光还原过程。我们的结果揭示了整个蛋白质显著的结构变化,总体时间常数为3微秒。C端(CT)区域在4.7微秒的时间尺度上做出反应,其次是EEE基序,而磷酸结合环(PBL)的动力学较慢(9微秒)。网络分析突出了色氨酸四联体与CT之间的直接途径,以及涉及EEE和PBL区域的远距离途径。CT动力学受到中心电子转移链中色氨酸残基重排的显著影响。我们的研究结果强调了在研究隐花色素磁感受时考虑更长时间尺度的重要性,并突出了非平衡粗粒度MD模拟作为揭示蛋白质光激活反应的强大工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea4/11725172/c993a6fa0e92/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验