Lee Alpha A, Lau Jason C S, Hogben Hannah J, Biskup Till, Kattnig Daniel R, Hore P J
Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, , Oxford OX1 3QZ, UK.
J R Soc Interface. 2014 Mar 26;11(95):20131063. doi: 10.1098/rsif.2013.1063. Print 2014 Jun 6.
There is growing evidence that the remarkable ability of animals, in particular birds, to sense the direction of the Earth's magnetic field relies on magnetically sensitive photochemical reactions of the protein cryptochrome. It is generally assumed that the magnetic field acts on the radical pair [FAD•- TrpH•+] formed by the transfer of an electron from a group of three tryptophan residues to the photo-excited flavin adenine dinucleotide cofactor within the protein. Here, we examine the suitability of an [FAD•- Z•] radical pair as a compass magnetoreceptor, where Z• is a radical in which the electron spin has no hyperfine interactions with magnetic nuclei, such as hydrogen and nitrogen. Quantum spin dynamics simulations of the reactivity of [FAD•- Z•] show that it is two orders of magnitude more sensitive to the direction of the geomagnetic field than is [FAD•- TrpH•+] under the same conditions (50 µT magnetic field, 1 µs radical lifetime). The favourable magnetic properties of [FAD•- Z•] arise from the asymmetric distribution of hyperfine interactions among the two radicals and the near-optimal magnetic properties of the flavin radical. We close by discussing the identity of Z• and possible routes for its formation as part of a spin-correlated radical pair with an FAD radical in cryptochrome.
越来越多的证据表明,动物,尤其是鸟类,感知地球磁场方向的非凡能力依赖于蛋白质隐花色素的磁敏光化学反应。一般认为,磁场作用于由三个色氨酸残基中的一个将电子转移至蛋白质内光激发的黄素腺嘌呤二核苷酸辅因子而形成的自由基对[FAD•- TrpH•+]。在此,我们研究了[FAD•- Z•]自由基对作为罗盘磁感受器的适用性,其中Z•是一种自由基,其电子自旋与诸如氢和氮等磁核没有超精细相互作用。对[FAD•- Z•]反应活性的量子自旋动力学模拟表明,在相同条件下(50 µT磁场,1 µs自由基寿命),它对地磁场方向的敏感度比[FAD•- TrpH•+]高两个数量级。[FAD•- Z•]良好的磁特性源于两个自由基之间超精细相互作用的不对称分布以及黄素自由基近乎最佳的磁特性。我们最后讨论了Z•的身份以及它作为与隐花色素中的FAD自由基形成自旋相关自由基对的一部分的可能形成途径。