Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany.
J Phys Chem B. 2023 Feb 2;127(4):838-845. doi: 10.1021/acs.jpcb.2c05335. Epub 2023 Jan 20.
The biophysical mechanism of the magnetic compass sense of migratory songbirds is thought to rely on the photochemical reactions of flavin-containing radical pairs in cryptochrome proteins located in the birds' eyes. A consequence of this hypothesis is that the effect of the Earth's magnetic field on the quantum yields of reaction products should be sensitive to isotopic substitutions that modify the hyperfine interactions in the radicals. In this report, we use spin dynamics simulations to explore the effects of H → H, C → C, and N → N isotopic substitutions on the functioning of cryptochrome 4a as a magnetic direction sensor. Two main conclusions emerge. (1) Uniform deuteration of the flavin chromophore appears to be the best way to boost the anisotropy of the magnetic field effect and to change its symmetry. (2) C substitution of three of the 12 flavin carbons, in particular C4, C4a, and C8α, seems to be the best recipe for attenuating the anisotropy. These predictions should give insight into the factors that control the magnetic sensitivity once spectroscopic techniques are available for measuring magnetic field effects on oriented protein samples.
据认为,候鸟的磁罗盘感的生物物理机制依赖于位于鸟类眼睛中的隐花色素蛋白中的含黄素自由基对的光化学反应。这一假设的一个结果是,地球磁场对反应产物量子产率的影响应该对修饰自由基中超精细相互作用的同位素取代敏感。在本报告中,我们使用自旋动力学模拟来探索 H → H、C → C 和 N → N 同位素取代对隐花色素 4a 作为磁方向传感器的功能的影响。得出两个主要结论。(1)黄素发色团的均匀氘化似乎是提高磁场效应各向异性和改变其对称性的最佳方法。(2)C 取代黄素的 12 个碳原子中的三个,特别是 C4、C4a 和 C8α,似乎是减弱各向异性的最佳方法。一旦有光谱技术可用于测量定向蛋白样品上的磁场效应,这些预测应该有助于了解控制磁敏感性的因素。