Institut de Recherches en Technologie et Sciences pour le Vivant-Laboratoire de Chimie et Biologie des Métaux (iRTSV-LCBM), UMR 5249, CEA-CNRS-UJF, Commissariat à l'Energie Atomique Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 09, France.
J Biol Chem. 2010 Feb 19;285(8):5792-801. doi: 10.1074/jbc.M109.065516. Epub 2009 Dec 9.
Post-translational modifications of ribosomal proteins are important for the accuracy of the decoding machinery. A recent in vivo study has shown that the rimO gene is involved in generation of the 3-methylthio derivative of residue Asp-89 in ribosomal protein S12 (Anton, B. P., Saleh, L., Benner, J. S., Raleigh, E. A., Kasif, S., and Roberts, R. J. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 1826-1831). This reaction is formally identical to that catalyzed by MiaB on the C2 of adenosine 37 near the anticodon of several tRNAs. We present spectroscopic evidence that Thermotoga maritima RimO, like MiaB, contains two [4Fe-4S] centers, one presumably bound to three invariant cysteines in the central radical S-adenosylmethionine (AdoMet) domain and the other to three invariant cysteines in the N-terminal UPF0004 domain. We demonstrate that holo-RimO can specifically methylthiolate the aspartate residue of a 20-mer peptide derived from S12, yielding a mixture of mono- and bismethylthio derivatives. Finally, we present the 2.0 A crystal structure of the central radical AdoMet and the C-terminal TRAM (tRNA methyltransferase 2 and MiaB) domains in apo-RimO. Although the core of the open triose-phosphate isomerase (TIM) barrel of the radical AdoMet domain was conserved, RimO showed differences in domain organization compared with other radical AdoMet enzymes. The unusually acidic TRAM domain, likely to bind the basic S12 protein, is located at the distal edge of the radical AdoMet domain. The basic S12 protein substrate is likely to bind RimO through interactions with both the TRAM domain and the concave surface of the incomplete TIM barrel. These biophysical results provide a foundation for understanding the mechanism of methylthioation by radical AdoMet enzymes in the MiaB/RimO family.
核糖体蛋白的翻译后修饰对于解码机制的准确性非常重要。最近的一项体内研究表明,rimO 基因参与了核糖体蛋白 S12 中残基天冬氨酸 89 的 3-甲硫基衍生物的生成(Anton,B.P.,Saleh,L.,Benner,J.S.,Raleigh,E.A.,Kasif,S.,和 Roberts,R.J.(2008)Proc. Natl. Acad. Sci. U. S. A. 105,1826-1831)。该反应在形式上与 MiaB 在几种 tRNA 的反密码子附近腺苷 37 的 C2 上催化的反应相同。我们提供了光谱证据表明,Thermotoga maritima RimO 像 MiaB 一样,含有两个 [4Fe-4S] 中心,一个可能与中央自由基 S-腺苷甲硫氨酸(AdoMet)结构域中的三个不变半胱氨酸结合,另一个与 N 端 UPF0004 结构域中的三个不变半胱氨酸结合。我们证明全酶 RimO 可以特异性地将 20 肽 S12 的天冬氨酸残基甲基硫醇化,生成单甲基硫醇化和双甲基硫醇化产物的混合物。最后,我们展示了apo-RimO 中中央自由基 AdoMet 和 C 端 TRAM(tRNA 甲基转移酶 2 和 MiaB)结构域的 2.0 A 晶体结构。尽管自由基 AdoMet 结构域的开放三磷酸甘油异构酶(TIM)桶的核心保守,但 RimO 与其他自由基 AdoMet 酶相比,在结构域组织上存在差异。异常酸性的 TRAM 结构域,可能与碱性 S12 蛋白结合,位于自由基 AdoMet 结构域的远端边缘。碱性 S12 蛋白底物可能通过与 TRAM 结构域和不完整 TIM 桶的凹面相互作用结合 RimO。这些生物物理结果为理解 MiaB/RimO 家族中自由基 AdoMet 酶的甲基硫醇化机制提供了基础。