Suppr超能文献

一碳代谢在细菌和真核细胞器中转译的调控。

Regulation of translation by one-carbon metabolism in bacteria and eukaryotic organelles.

机构信息

Biozentrum, University of Basel, Basel, Switzerland.

Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Jawaharlal Nehru Centre for Advanced Scientific Studies, Jakkur, Bangalore, India.

出版信息

J Biol Chem. 2021 Jan-Jun;296:100088. doi: 10.1074/jbc.REV120.011985. Epub 2020 Nov 21.

Abstract

Protein synthesis is an energetically costly cellular activity. It is therefore important that the process of mRNA translation remains in excellent synchrony with cellular metabolism and its energy reserves. Unregulated translation could lead to the production of incomplete, mistranslated, or misfolded proteins, squandering the energy needed for cellular sustenance and causing cytotoxicity. One-carbon metabolism (OCM), an integral part of cellular intermediary metabolism, produces a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl). These OCM intermediates are required for the production of amino acids such as methionine and other biomolecules such as purines, thymidylate, and redox regulators. In this review, we discuss how OCM impacts the translation apparatus (composed of ribosome, tRNA, mRNA, and translation factors) and regulates crucial steps in protein synthesis. More specifically, we address how the OCM metabolites regulate the fidelity and rate of translation initiation in bacteria and eukaryotic organelles such as mitochondria. Modulation of the fidelity of translation initiation by OCM opens new avenues to understand alternative translation mechanisms involved in stress tolerance and drug resistance.

摘要

蛋白质合成是一种耗能的细胞活动。因此,mRNA 翻译过程与细胞代谢及其能量储备保持极好的同步性非常重要。不受调节的翻译可能导致产生不完整、翻译错误或错误折叠的蛋白质,浪费细胞维持所需的能量并导致细胞毒性。一碳代谢(OCM)是细胞中间代谢的一个组成部分,产生许多一碳单位中间产物(甲酰基、亚甲基、次甲基、甲基)。这些 OCM 中间产物是产生蛋氨酸等氨基酸和嘌呤、胸苷酸和氧化还原调节剂等其他生物分子所必需的。在这篇综述中,我们讨论了 OCM 如何影响翻译装置(由核糖体、tRNA、mRNA 和翻译因子组成)以及调节蛋白质合成的关键步骤。更具体地说,我们讨论了 OCM 代谢物如何调节细菌和真核细胞器(如线粒体)中翻译起始的保真度和速率。OCM 对翻译起始保真度的调节为理解应激耐受和耐药性中涉及的替代翻译机制开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2708/7949028/49291fb035b6/gr1.jpg

相似文献

1
Regulation of translation by one-carbon metabolism in bacteria and eukaryotic organelles.
J Biol Chem. 2021 Jan-Jun;296:100088. doi: 10.1074/jbc.REV120.011985. Epub 2020 Nov 21.
2
One-carbon metabolism and microbial pathogenicity.
Mol Oral Microbiol. 2024 Aug;39(4):156-164. doi: 10.1111/omi.12417. Epub 2023 May 24.
3
Genetic analysis of translation initiation in bacteria: An initiator tRNA-centric view.
Mol Microbiol. 2024 Nov;122(5):772-788. doi: 10.1111/mmi.15243. Epub 2024 Feb 27.
4
Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome.
J Biol Chem. 2018 Apr 6;293(14):5220-5229. doi: 10.1074/jbc.RA117.000761. Epub 2018 Feb 16.
5
Assembly and analysis of eukaryotic translation initiation complexes.
Methods Enzymol. 2007;430:147-77. doi: 10.1016/S0076-6879(07)30007-4.
6
Emerging Role of Eukaryote Ribosomes in Translational Control.
Int J Mol Sci. 2019 Mar 11;20(5):1226. doi: 10.3390/ijms20051226.
7
Protein-protein interactions required during translation.
Plant Mol Biol. 2002 Dec;50(6):949-70. doi: 10.1023/a:1021220910664.
8
Mitochondrial translation requires folate-dependent tRNA methylation.
Nature. 2018 Feb 1;554(7690):128-132. doi: 10.1038/nature25460. Epub 2018 Jan 24.
9
Mechanisms and regulation of protein synthesis in mitochondria.
Nat Rev Mol Cell Biol. 2021 May;22(5):307-325. doi: 10.1038/s41580-021-00332-2. Epub 2021 Feb 16.
10
Eukaryotic aspects of translation initiation brought into focus.
Philos Trans R Soc Lond B Biol Sci. 2017 Mar 19;372(1716). doi: 10.1098/rstb.2016.0186.

引用本文的文献

2
DmdA-independent lag phase shortening in Phaeobacter inhibens bacteria under stress conditions.
FEBS J. 2025 Aug;292(16):4232-4253. doi: 10.1111/febs.70128. Epub 2025 May 3.
3
Determination of the genome-scale metabolic network of str. Toulouse to optimize growth for its use as chassis for synthetic biology.
Front Bioeng Biotechnol. 2025 Mar 27;13:1527084. doi: 10.3389/fbioe.2025.1527084. eCollection 2025.
5
Proteomic Profiling in SF11 Exposed to Condensed Tannins from Sainfoin.
ACS Omega. 2024 Sep 23;9(40):41148-41156. doi: 10.1021/acsomega.3c08947. eCollection 2024 Oct 8.
6
The crosstalk between metabolism and translation.
Cell Metab. 2024 Sep 3;36(9):1945-1962. doi: 10.1016/j.cmet.2024.07.022.
8
Algal methylated compounds shorten the lag phase of Phaeobacter inhibens bacteria.
Nat Microbiol. 2024 Aug;9(8):2006-2021. doi: 10.1038/s41564-024-01742-6. Epub 2024 Jul 5.
10
Design of Ultrasound-Driven Charge Interference Therapy for Wound Infection.
Nano Lett. 2024 Jul 3;24(26):7868-7878. doi: 10.1021/acs.nanolett.4c00930. Epub 2024 Jun 24.

本文引用的文献

1
Structure of the bacterial ribosome at 2 Å resolution.
Elife. 2020 Sep 14;9:e60482. doi: 10.7554/eLife.60482.
2
Metabolic Flux of N-Formyltetrahydrofolate Plays a Critical Role in the Fidelity of Translation Initiation in Escherichia coli.
J Mol Biol. 2020 Sep 4;432(19):5473-5488. doi: 10.1016/j.jmb.2020.08.003. Epub 2020 Aug 11.
3
A Strategic Target Rescues Trimethoprim Sensitivity in Escherichia coli.
iScience. 2020 Apr 24;23(4):100986. doi: 10.1016/j.isci.2020.100986. Epub 2020 Mar 16.
4
One-carbon metabolism, folate, zinc and translation.
Microb Biotechnol. 2020 Jul;13(4):899-925. doi: 10.1111/1751-7915.13550. Epub 2020 Mar 9.
5
Global mistranslation increases cell survival under stress in Escherichia coli.
PLoS Genet. 2020 Mar 9;16(3):e1008654. doi: 10.1371/journal.pgen.1008654. eCollection 2020 Mar.
6
Initiation of Protein Synthesis with Non-Canonical Amino Acids In Vivo.
Angew Chem Int Ed Engl. 2020 Feb 17;59(8):3122-3126. doi: 10.1002/anie.201914671. Epub 2020 Jan 21.
7
Methionine at the Heart of Anabolism and Signaling: Perspectives From Budding Yeast.
Front Microbiol. 2019 Nov 15;10:2624. doi: 10.3389/fmicb.2019.02624. eCollection 2019.
8
Translation initiation in mammalian mitochondria- a prokaryotic perspective.
RNA Biol. 2020 Feb;17(2):165-175. doi: 10.1080/15476286.2019.1690099. Epub 2019 Nov 14.
9
Timing and specificity of cotranslational nascent protein modification in bacteria.
Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23050-23060. doi: 10.1073/pnas.1912264116. Epub 2019 Oct 30.
10
Ribosomal mistranslation leads to silencing of the unfolded protein response and increased mitochondrial biogenesis.
Commun Biol. 2019 Oct 17;2:381. doi: 10.1038/s42003-019-0626-9. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验