Suppr超能文献

从半结构化电子病历系统中提取门诊数据:一种方便获取和使用数据以进行质量控制和研究的模型。

Data extraction from a semi-structured electronic medical record system for outpatients: a model to facilitate the access and use of data for quality control and research.

机构信息

Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden.

出版信息

Health Informatics J. 2009 Dec;15(4):305-19. doi: 10.1177/1460458209345889.

Abstract

The use of clinical data from electronic medical records (EMRs) for clinical research and for evaluation of quality of care requires an extraction process. Many efforts have failed because the extracted data seemed to be unstructured, incomplete and ridden by errors. We have developed and tested a concept of extracting semi-structured EMRs (Journal III, Profdoc) data from 776 diabetes patients in a general practice clinic over a 5 year period. We used standard database management techniques commonly applied in clinical research in the pharmaceutical industry to clean up the data and make the data available for statistical analysis. The key problem was difficulties locating the data, as no standard way to enter the data in the EMR system was reinforced. Furthermore, no built-in edit checks to facilitate data entry were available. Laboratory, drug information and diagnostic data could be used directly while other data such as vital signs required much work to locate and become useful.

摘要

将电子病历(EMR)中的临床数据用于临床研究和评估医疗质量需要一个提取过程。许多努力都失败了,因为提取的数据似乎是非结构化的、不完整的,并且存在错误。我们已经开发并测试了一种从一家普通诊所的 776 名糖尿病患者的 EMR 中提取半结构化数据的概念(Journal III,Profdoc),为期 5 年。我们使用了制药行业临床研究中常用的标准数据库管理技术来清理数据,并使其可用于统计分析。关键问题是难以定位数据,因为 EMR 系统中没有强化的标准数据输入方式。此外,没有内置的编辑检查来方便数据输入。实验室、药物信息和诊断数据可以直接使用,而其他数据,如生命体征,则需要大量工作才能定位并变得有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验