Suppr超能文献

人类和黑猩猩基因表达模式的差异定义了大脑中转录因子不断进化的网络。

Differences in human and chimpanzee gene expression patterns define an evolving network of transcription factors in brain.

机构信息

Department of Cell and Developmental Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22358-63. doi: 10.1073/pnas.0911376106. Epub 2009 Dec 10.

Abstract

Humans differ from other primates by marked differences in cognitive abilities and a significantly larger brain. These differences correlate with metabolic changes, as evidenced by the relative up-regulation of energy-related genes and metabolites in human brain. While the mechanisms underlying these evolutionary changes have not been elucidated, altered activities of key transcription factors (TFs) could play a pivotal role. To assess this possibility, we analyzed microarray data from five tissues from humans and chimpanzees. We identified 90 TF genes with significantly different expression levels in human and chimpanzee brain among which the rapidly evolving KRAB-zinc finger genes are markedly over-represented. The differentially expressed TFs cluster within a robust regulatory network consisting of two distinct but interlinked modules, one strongly associated with energy metabolism functions, and the other with transcription, vesicular transport, and ubiquitination. Our results suggest that concerted changes in a relatively small number of interacting TFs may coordinate major gene expression differences in human and chimpanzee brain.

摘要

人类与其他灵长类动物在认知能力和大脑大小方面存在显著差异。这些差异与代谢变化相关,人类大脑中与能量相关的基因和代谢物相对上调就证明了这一点。虽然这些进化变化的机制尚未阐明,但关键转录因子 (TF) 的活性改变可能起着关键作用。为了评估这种可能性,我们分析了来自人类和黑猩猩的五种组织的微阵列数据。我们确定了 90 个 TF 基因,它们在人类和黑猩猩大脑中的表达水平存在显著差异,其中快速进化的 KRAB 锌指基因明显过表达。差异表达的 TF 聚类在一个稳健的调控网络中,该网络由两个不同但相互关联的模块组成,一个与能量代谢功能密切相关,另一个与转录、囊泡运输和泛素化有关。我们的研究结果表明,相对较少的相互作用的 TF 的协同变化可能协调人类和黑猩猩大脑中主要基因表达差异。

相似文献

1
Differences in human and chimpanzee gene expression patterns define an evolving network of transcription factors in brain.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22358-63. doi: 10.1073/pnas.0911376106. Epub 2009 Dec 10.
3
Expression profiling in primates reveals a rapid evolution of human transcription factors.
Nature. 2006 Mar 9;440(7081):242-5. doi: 10.1038/nature04559.
5
MicroRNA expression and regulation in human, chimpanzee, and macaque brains.
PLoS Genet. 2011 Oct;7(10):e1002327. doi: 10.1371/journal.pgen.1002327. Epub 2011 Oct 13.
6
The impact of genomic neighborhood on the evolution of human and chimpanzee transcriptome.
Genome Res. 2009 May;19(5):785-94. doi: 10.1101/gr.086165.108. Epub 2009 Feb 19.
7
The role of gene regulatory factors in the evolutionary history of humans.
Curr Opin Genet Dev. 2014 Dec;29:60-7. doi: 10.1016/j.gde.2014.08.007. Epub 2014 Sep 15.
8
Regulatory network structure as a dominant determinant of transcription factor evolutionary rate.
PLoS Comput Biol. 2012;8(10):e1002734. doi: 10.1371/journal.pcbi.1002734. Epub 2012 Oct 18.
9
Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees.
Science. 2005 Sep 16;309(5742):1850-4. doi: 10.1126/science.1108296. Epub 2005 Sep 1.
10
Human-specific transcriptional networks in the brain.
Neuron. 2012 Aug 23;75(4):601-17. doi: 10.1016/j.neuron.2012.05.034.

引用本文的文献

2
Unlocking the brain's zinc code: implications for cognitive function and disease.
Front Biophys. 2024;2. doi: 10.3389/frbis.2024.1406868. Epub 2024 Jun 11.
3
Analysis of human neuronal cells carrying ASTN2 deletion associated with psychiatric disorders.
Transl Psychiatry. 2024 Jun 3;14(1):236. doi: 10.1038/s41398-024-02962-4.
4
Long non-coding RNAs expression and regulation across different brain regions in primates.
Sci Data. 2024 May 28;11(1):545. doi: 10.1038/s41597-024-03380-3.
7
Associations between blood leukocyte DNA methylation and sustained attention in mid-to-late childhood.
Epigenomics. 2023 Oct;15(19):965-981. doi: 10.2217/epi-2023-0169. Epub 2023 Nov 9.
8
Noncoding RNAs improve the predictive power of network medicine.
Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2301342120. doi: 10.1073/pnas.2301342120. Epub 2023 Oct 31.
9
Genetic features and genomic targets of human KRAB-zinc finger proteins.
Genome Res. 2023 Aug;33(8):1409-1423. doi: 10.1101/gr.277722.123. Epub 2023 Sep 20.

本文引用的文献

1
Prep1 directly regulates the intrinsic apoptotic pathway by controlling Bcl-XL levels.
Mol Cell Biol. 2009 Mar;29(5):1143-51. doi: 10.1128/MCB.01273-08. Epub 2008 Dec 22.
2
Gene regulation in primates evolves under tissue-specific selection pressures.
PLoS Genet. 2008 Nov;4(11):e1000271. doi: 10.1371/journal.pgen.1000271. Epub 2008 Nov 21.
3
Functional organization of the transcriptome in human brain.
Nat Neurosci. 2008 Nov;11(11):1271-82. doi: 10.1038/nn.2207. Epub 2008 Oct 12.
4
Geometric interpretation of gene coexpression network analysis.
PLoS Comput Biol. 2008 Aug 15;4(8):e1000117. doi: 10.1371/journal.pcbi.1000117.
5
Metabolic changes in schizophrenia and human brain evolution.
Genome Biol. 2008;9(8):R124. doi: 10.1186/gb-2008-9-8-r124. Epub 2008 Aug 5.
6
Rab GTPases and their roles in brain neurons and glia.
Brain Res Rev. 2008 Jun;58(1):236-46. doi: 10.1016/j.brainresrev.2008.04.006. Epub 2008 Apr 12.
7
The Yin and Yang of YY1 in the nervous system.
J Neurochem. 2008 Aug;106(4):1493-502. doi: 10.1111/j.1471-4159.2008.05486.x. Epub 2008 May 15.
8
The histone-like NF-Y is a bifunctional transcription factor.
Mol Cell Biol. 2008 Mar;28(6):2047-58. doi: 10.1128/MCB.01861-07. Epub 2008 Jan 22.
9
Diverse roles of Rho family GTPases in neuronal development, survival, and death.
Front Biosci. 2008 Jan 1;13:657-76. doi: 10.2741/2710.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验