Suppr超能文献

定量分析运动引起的早期和晚期收缩期逆行冠状动脉血流增强。

Quantitative analysis of exercise-induced enhancement of early- and late-systolic retrograde coronary blood flow.

机构信息

Department of Biomedical Sciences, University of Missouri, Columbia, Missouri 65211, USA.

出版信息

J Appl Physiol (1985). 2010 Mar;108(3):507-14. doi: 10.1152/japplphysiol.01096.2009. Epub 2009 Dec 10.

Abstract

Coronary blood flow (CBF) is reduced and transiently reversed during systole via cardiac contraction. Cardiac contractility, coronary tone, and arterial pressure each influence systolic CBF (CBF(SYS)), particularly by modulating the retrograde component of CBF(SYS). The effect of concurrent changes in these factors on CBF(SYS) during dynamic exercise has not been examined. Using chronically instrumented swine, we hypothesized that dynamic exercise enhances retrograde CBF(SYS). Phasic CBF was examined at rest and during treadmill exercise [2-5 miles/h (mph)]. Absolute values of mean CBF over the cardiac cycle (CBF(CYCLE)) as well as mean CBF in diastole (CBF(DIAS)) and mean CBF(SYS) were increased by exercise, while relative CBF(DIAS) and CBF(SYS) expressed as percentage of mean CBF(CYCLE) were principally unchanged. Early retrograde CBF(SYS) was present at rest and increased in magnitude (-33 +/- 4 ml/min) and as a percent of CBF(CYCLE) (-0.6 +/- 0.1%) at 5 mph. This reversal was transient, comprising 3.7 +/- 0.3% of cardiac cycle duration at 5 mph. Our results also reveal that moderately intense exercise (>3 mph) induced a second CBF reversal in late systole before aortic valve closure. At 5 mph, late retrograde CBF(SYS) amounted to -53 +/- 11 ml/min (-3.1 +/- 0.7% of CBF(CYCLE)) while occupying 11.1 +/- 0.3% of cardiac cycle duration. Wave-intensity analysis revealed that the second flow reversal coincided with an enhanced aortic forward-going decompression wave (vs. rest). Therefore, our data demonstrate a predictable increase in early-systolic CBF reversal during exercise and additionally that exercise induces a late-systolic CBF reversal related to the hemodynamic effects of left ventricular relaxation that is not predictable using current models of phasic CBF.

摘要

冠状动脉血流(CBF)在收缩期通过心肌收缩而减少并暂时逆转。心肌收缩力、冠状动脉张力和动脉压都会影响收缩期 CBF(CBF(SYS)),特别是通过调节 CBF(SYS)的逆行分量。这些因素在动态运动中同时变化对收缩期 CBF(SYS)的影响尚未被研究过。使用慢性仪器化的猪,我们假设动态运动增强了逆行 CBF(SYS)。在休息和跑步机运动期间(2-5 英里/小时(mph))检查相 CBF。整个心动周期(CBF(CYCLE))的平均 CBF 的绝对值(CBF(CYCLE))以及舒张期(CBF(DIAS))和收缩期平均 CBF(SYS)的平均 CBF 都随运动而增加,而相对 CBF(DIAS)和 CBF(SYS)表示为平均 CBF(CYCLE)的百分比基本不变。在休息时存在早期逆行 CBF(SYS),并且在 5 英里/小时时幅度增加(-33 +/- 4 ml/min)和作为 CBF(CYCLE)的百分比(-0.6 +/- 0.1%)。这种逆转是短暂的,在 5 英里/小时时占心动周期持续时间的 3.7 +/- 0.3%。我们的结果还表明,在主动脉瓣关闭之前,中等强度的运动(>3 mph)在收缩晚期引起第二次 CBF 逆转。在 5 英里/小时时,晚期逆行 CBF(SYS)达到-53 +/- 11 ml/min(-3.1 +/- 0.7%的 CBF(CYCLE)),而占心动周期持续时间的 11.1 +/- 0.3%。波强分析表明,第二次血流逆转与增强的主动脉前向减压波相对应(与休息时相比)。因此,我们的数据表明,在运动期间可以预测早期收缩期 CBF 逆转的增加,并且运动还诱导与左心室松弛的血流动力学效应相关的晚期收缩期 CBF 逆转,这是当前相 CBF 模型无法预测的。

相似文献

1
Quantitative analysis of exercise-induced enhancement of early- and late-systolic retrograde coronary blood flow.
J Appl Physiol (1985). 2010 Mar;108(3):507-14. doi: 10.1152/japplphysiol.01096.2009. Epub 2009 Dec 10.
2
Late-systolic retrograde coronary flow: an old observation finally explained by a novel mechanism.
J Appl Physiol (1985). 2010 Mar;108(3):479-80. doi: 10.1152/japplphysiol.00021.2010. Epub 2010 Jan 14.
3
Mechanical determinants of coronary blood flow during dynamic alterations in myocardial contractility.
Am J Physiol. 1993 Oct;265(4 Pt 2):H1112-8. doi: 10.1152/ajpheart.1993.265.4.H1112.
4
Muscle metaboreflex-induced coronary vasoconstriction functionally limits increases in ventricular contractility.
J Appl Physiol (1985). 2010 Aug;109(2):271-8. doi: 10.1152/japplphysiol.01243.2009. Epub 2010 Apr 22.
5
Contraction-relaxation coupling: determination of the onset of diastole.
Am J Physiol. 1999 Jul;277(1):H23-7. doi: 10.1152/ajpheart.1999.277.1.H23.
6
Preload maintenance and the left ventricular response to prolonged exercise in men.
Exp Physiol. 2007 Mar;92(2):383-90. doi: 10.1113/expphysiol.2006.035089. Epub 2006 Dec 7.
7
Vasomotor tone affects diastolic coronary flow and flow impediment by cardiac contraction similarly.
Am J Physiol. 1994 May;266(5 Pt 2):H1944-50. doi: 10.1152/ajpheart.1994.266.5.H1944.
8
Gender differences in left ventricular function at rest and with exercise in asymptomatic aortic stenosis.
Am Heart J. 1996 Jan;131(1):94-100. doi: 10.1016/s0002-8703(96)90056-3.
9
Inhibition of NO production increases myocardial blood flow and oxygen consumption in congestive heart failure.
Am J Physiol Heart Circ Physiol. 2002 Jun;282(6):H2278-83. doi: 10.1152/ajpheart.00504.2001.
10
Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis.
J Thorac Cardiovasc Surg. 2011 Nov;142(5):1205-13. doi: 10.1016/j.jtcvs.2011.02.018. Epub 2011 Apr 7.

引用本文的文献

1
How does exercise affect energy metabolism? An approach for cardiac muscle.
Heliyon. 2023 Jun 13;9(6):e17164. doi: 10.1016/j.heliyon.2023.e17164. eCollection 2023 Jun.
2
Mechanism of exercise intolerance in heart diseases predicted by a computer model of myocardial demand-supply feedback system.
Comput Methods Programs Biomed. 2022 Dec;227:107188. doi: 10.1016/j.cmpb.2022.107188. Epub 2022 Oct 21.
4
Regulation of Coronary Blood Flow.
Compr Physiol. 2017 Mar 16;7(2):321-382. doi: 10.1002/cphy.c160016.
5
Severe familial hypercholesterolemia impairs the regulation of coronary blood flow and oxygen supply during exercise.
Basic Res Cardiol. 2016 Nov;111(6):61. doi: 10.1007/s00395-016-0579-9. Epub 2016 Sep 13.
7
Numerical simulation and clinical implications of stenosis in coronary blood flow.
Biomed Res Int. 2014;2014:514729. doi: 10.1155/2014/514729. Epub 2014 Jun 2.
8
Reduced contribution of endothelin to the regulation of systemic and pulmonary vascular tone in severe familial hypercholesterolaemia.
J Physiol. 2014 Apr 15;592(8):1757-69. doi: 10.1113/jphysiol.2013.267351. Epub 2014 Jan 13.
9
Heart failure with preserved ejection fraction: chronic low-intensity interval exercise training preserves myocardial O2 balance and diastolic function.
J Appl Physiol (1985). 2013 Jan 1;114(1):131-47. doi: 10.1152/japplphysiol.01059.2012. Epub 2012 Oct 25.
10
Heart rate: a forgotten link in coronary artery disease?
Nat Rev Cardiol. 2011 Apr 26;8(7):369-79. doi: 10.1038/nrcardio.2011.58.

本文引用的文献

1
An introduction to wave intensity analysis.
Med Biol Eng Comput. 2009 Feb;47(2):175-88. doi: 10.1007/s11517-009-0439-y. Epub 2009 Feb 11.
2
Regulation of coronary blood flow during exercise.
Physiol Rev. 2008 Jul;88(3):1009-86. doi: 10.1152/physrev.00045.2006.
3
Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype.
J Appl Physiol (1985). 2008 Mar;104(3):588-600. doi: 10.1152/japplphysiol.01096.2007. Epub 2007 Dec 6.
4
Aortic wave intensity analysis of ventricular-vascular interaction during incremental dobutamine infusion in adult sheep.
Am J Physiol Heart Circ Physiol. 2008 Jan;294(1):H481-9. doi: 10.1152/ajpheart.00962.2006. Epub 2007 Nov 16.
5
Effects of chronic nitric oxide synthase inhibition on responses to acute exercise in swine.
J Appl Physiol (1985). 2008 Jan;104(1):186-97. doi: 10.1152/japplphysiol.00731.2007. Epub 2007 Nov 1.
6
Simultaneous determination of wave speed and arrival time of reflected waves using the pressure-velocity loop.
Med Biol Eng Comput. 2007 Dec;45(12):1201-10. doi: 10.1007/s11517-007-0241-7. Epub 2007 Aug 21.
7
Wave intensity analysis of left ventricular filling: application of windkessel theory.
Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H2817-23. doi: 10.1152/ajpheart.00936.2006. Epub 2007 Feb 2.
8
Cross-talk between cardiac muscle and coronary vasculature.
Physiol Rev. 2006 Oct;86(4):1263-308. doi: 10.1152/physrev.00029.2005.
9
NO and prostanoids blunt endothelin-mediated coronary vasoconstrictor influence in exercising swine.
Am J Physiol Heart Circ Physiol. 2006 Nov;291(5):H2075-81. doi: 10.1152/ajpheart.01109.2005. Epub 2006 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验