Suppr超能文献

冠状动脉血流的调节

Regulation of Coronary Blood Flow.

作者信息

Goodwill Adam G, Dick Gregory M, Kiel Alexander M, Tune Johnathan D

机构信息

Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN.

California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA.

出版信息

Compr Physiol. 2017 Mar 16;7(2):321-382. doi: 10.1002/cphy.c160016.

Abstract

The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.

摘要

心脏通过冠脉循环为自身供血,这一功能独一无二。冠脉血流调节相当复杂,历经100多年的专门研究,现已明确其受多种机制支配,包括血管外压迫力(组织压力)、冠脉灌注压、肌源性、局部代谢、内皮以及神经和激素影响。虽然这些决定因素中的每一个都可对心肌灌注产生深远影响,主要是通过对终效应离子通道的作用,但这些机制共同调节冠脉血管阻力,确保冠脉循环能充分满足心肌对氧气和底物的需求。本系列《综合生理学》的目的是突出关于冠脉血流生理调节的当前知识,重点是功能解剖以及心肌氧输送的物理和生物学决定因素之间的相互作用。© 2017美国生理学会。《综合生理学》7:321 - 382, 2017。

相似文献

1
Regulation of Coronary Blood Flow.
Compr Physiol. 2017 Mar 16;7(2):321-382. doi: 10.1002/cphy.c160016.
2
Regulation of coronary blood flow during exercise.
Physiol Rev. 2008 Jul;88(3):1009-86. doi: 10.1152/physrev.00045.2006.
3
[Basic regulatory mechanisms of coronary circulation].
Nihon Rinsho. 2003 Apr;61 Suppl 4:35-41.
4
Role of ion channels in coronary microcirculation: a review of the literature.
Future Cardiol. 2013 Nov;9(6):897-905. doi: 10.2217/fca.13.65.
5
Mathematical analysis of coronary autoregulation and vascular reserve in closed-loop circulation.
Comput Biomed Res. 1994 Aug;27(4):263-75. doi: 10.1006/cbmr.1994.1021.
6
Acute adaptations of the coronary circulation to exercise.
Cell Biochem Biophys. 2005;43(1):17-35. doi: 10.1385/CBB:43:1:017.
8
Coronary vasodilating drug effects or normal coronary blood flow regulation?
J Cardiothorac Vasc Anesth. 1998 Aug;12(4):450-6. doi: 10.1016/s1053-0770(98)90204-x.
9
Effects of anesthetics on the coronary circulation.
Acta Anaesthesiol Belg. 1990;41(4):327-43.
10
Regulation of myocardial oxygen delivery.
Intensive Care Med. 1990;16 Suppl 2:S157-63. doi: 10.1007/BF01785246.

引用本文的文献

1
Brain‑heart axis: Neurostimulation techniques in ischemic heart disease (Review).
Int J Mol Med. 2025 Oct;56(4). doi: 10.3892/ijmm.2025.5589. Epub 2025 Jul 19.
2
Ketone Bodies in Cardiovascular Disease: The Vasculature as a Therapeutic Target.
JACC Basic Transl Sci. 2025 Jul 17;10(8):101328. doi: 10.1016/j.jacbts.2025.101328.
3
Coronary Microvascular Dysfunction in Ischaemic Heart Disease: Lessons From Large Animal Models.
Basic Clin Pharmacol Toxicol. 2025 Aug;137(2):e70074. doi: 10.1111/bcpt.70074.
4
Potassium as an electro-metabolic signal for local coronary vasodilation.
Basic Res Cardiol. 2025 Jun 25. doi: 10.1007/s00395-025-01126-9.
5
Vascular (dys)function in the failing heart.
Nat Rev Cardiol. 2025 Jun 22. doi: 10.1038/s41569-025-01163-w.
6
Unraveling septal perfusion abnormalities in Ebstein's anomaly: A case report contrasting PET MPI with myocardial reality.
Radiol Case Rep. 2025 May 22;20(8):3970-3976. doi: 10.1016/j.radcr.2025.04.105. eCollection 2025 Aug.
10
Organ preservation: current limitations and optimization approaches.
Front Med (Lausanne). 2025 Mar 26;12:1566080. doi: 10.3389/fmed.2025.1566080. eCollection 2025.

本文引用的文献

1
Critical contribution of KV1 channels to the regulation of coronary blood flow.
Basic Res Cardiol. 2016 Sep;111(5):56. doi: 10.1007/s00395-016-0575-0. Epub 2016 Aug 5.
2
Proliferation of Coronary Adventitial Vasa Vasorum in Patients With Spontaneous Coronary Artery Dissection.
JACC Cardiovasc Imaging. 2016 Jul;9(7):891-892. doi: 10.1016/j.jcmg.2015.11.030.
3
Arteriolar oxygen reactivity: where is the sensor and what is the mechanism of action?
J Physiol. 2016 Sep 15;594(18):5055-77. doi: 10.1113/JP270192. Epub 2016 Jul 21.
4
Open-loop (feed-forward) and feedback control of coronary blood flow during exercise, cardiac pacing, and pressure changes.
Am J Physiol Heart Circ Physiol. 2016 Jun 1;310(11):H1683-94. doi: 10.1152/ajpheart.00663.2015. Epub 2016 Apr 1.
5
Mitochondrial signaling in the vascular endothelium: beyond reactive oxygen species.
Basic Res Cardiol. 2016 May;111(3):26. doi: 10.1007/s00395-016-0546-5. Epub 2016 Mar 18.
6
Novel Roles for Kv7 Channels in Shaping Histamine-Induced Contractions and Bradykinin-Dependent Relaxations in Pig Coronary Arteries.
PLoS One. 2016 Feb 4;11(2):e0148569. doi: 10.1371/journal.pone.0148569. eCollection 2016.
7
The Human Microcirculation: Regulation of Flow and Beyond.
Circ Res. 2016 Jan 8;118(1):157-72. doi: 10.1161/CIRCRESAHA.115.305364.
8
KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine.
Am J Physiol Heart Circ Physiol. 2016 Mar 15;310(6):H693-704. doi: 10.1152/ajpheart.00688.2015. Epub 2016 Jan 29.
9
Critical Role for Telomerase in the Mechanism of Flow-Mediated Dilation in the Human Microcirculation.
Circ Res. 2016 Mar 4;118(5):856-66. doi: 10.1161/CIRCRESAHA.115.307918. Epub 2015 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验