Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, F-31320 Castanet Tolosan, France.
J Bacteriol. 2010 Feb;192(4):1011-9. doi: 10.1128/JB.01189-09. Epub 2009 Dec 11.
The ability of Ralstonia solanacearum to cause disease in plants depends on its type III secretion system (T3SS). The expression of the T3SS and its effector substrates is coordinately controlled by a regulatory cascade, at the bottom of which is HrpB. Transcription of the hrpB gene is activated by a plant-responsive regulator named HrpG, which is a master regulator of a wide array of pathogenicity functions in R. solanacearum. We have identified in the genome of strain GMI1000 a close paralog of hrpG (83% overall similarity at the protein level) that we have named prhG. Despite this high similarity, the expression pattern of prhG is remarkably different from that of hrpG: prhG expression is activated after growth of bacteria in minimal medium but not in the presence of host cells, while hrpG expression is specifically induced in response to plant cell signals. We provide genetic evidence that prhG is a transcriptional regulator that, like hrpG, controls the expression of hrpB and the hrpB-regulated genes under minimal medium conditions. However, the regulatory functions of prhG and hrpG are distinct: prhG has no influence on hrpB expression when the bacteria are in the presence of plant cells, and transcriptomic profiling analysis of a prhG mutant revealed that the PrhG and HrpG regulons have only one pathogenicity target in common, hrpB. Functional complementation experiments indicated that PrhG and HrpG are individually sufficient to activate hrpB expression in minimal medium. Rather surprisingly, a prhG disruption mutant had little impact on pathogenicity, which may indicate that prhG has a minor role in the activation of T3SS genes when R. solanacearum grows parasitically inside the plant. The cross talk between pathogenicity regulatory proteins and environmental signals described here denotes that an intricate network is at the basis of the bacterial disease program.
青枯雷尔氏菌在植物中致病的能力取决于其 III 型分泌系统(T3SS)。T3SS 及其效应底物的表达受到调控级联的协调控制,该级联的底部是 HrpB。hrpB 基因的转录被一种称为 HrpG 的植物反应调节剂激活,HrpG 是青枯雷尔氏菌广泛致病性功能的主要调节剂。我们在 GMI1000 菌株的基因组中鉴定出了一个与 hrpG 密切相关的近缘基因(蛋白质水平的整体相似度为 83%),我们将其命名为 prhG。尽管存在这种高度相似性,但 prhG 的表达模式与 hrpG 截然不同:prhG 的表达在细菌在最小培养基中生长后被激活,但在存在宿主细胞时不会被激活,而 hrpG 的表达则是专门响应植物细胞信号而被诱导的。我们提供了遗传证据表明,prhG 是一种转录调节剂,与 hrpG 一样,在最小培养基条件下控制 hrpB 和 hrpB 调控基因的表达。然而,prhG 和 hrpG 的调节功能是不同的:当细菌存在于植物细胞中时,prhG 对 hrpB 的表达没有影响,并且 prhG 突变体的转录组分析表明,PrhG 和 HrpG 调控子只有一个共同的致病性靶标,即 hrpB。功能互补实验表明,PrhG 和 HrpG 各自足以在最小培养基中激活 hrpB 的表达。令人惊讶的是,prhG 缺失突变体对致病性的影响很小,这可能表明 prhG 在青枯雷尔氏菌寄生在植物内部时,对 T3SS 基因的激活作用较小。这里描述的致病性调节蛋白与环境信号之间的相互作用表明,一个复杂的网络是细菌疾病程序的基础。