LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
GeT-PlaGe, Genotoul, INRAE, US1426, Castanet-Tolosan, France.
PLoS Biol. 2024 Sep 20;22(9):e3002792. doi: 10.1371/journal.pbio.3002792. eCollection 2024 Sep.
Adaptation is usually explained by beneficial genetic mutations that are transmitted from parents to offspring and become fixed in the adapted population. However, genetic mutation analysis alone is not sufficient to fully explain the adaptive processes, and several studies report the existence of nongenetic (or epigenetic) inheritance that can enable adaptation to new environments. In the present work, we tested the hypothesis of the role of DNA methylation, a form of epigenetic modification, in adaptation of the plant pathogen Ralstonia pseudosolanacearum to the host during experimental evolution. Using SMRT-seq technology, we analyzed the methylomes of 31 experimentally evolved clones obtained after serial passages on 5 different plant species during 300 generations. Comparison with the methylome of the ancestral clone revealed a list of 50 differential methylated sites (DMSs) at the GTWWAC motif. Gene expression analysis of the 39 genes targeted by these DMSs revealed limited correlation between differential methylation and differential expression of the corresponding genes. Only 1 gene showed a correlation, the RSp0338 gene encoding the EpsR regulator protein. The MSRE-qPCR technology, used as an alternative approach for DNA methylation analysis, also found the 2 DMSs upstream RSp0338. Using site-directed mutagenesis, we demonstrated the contribution of these 2 DMSs in host adaptation. As these DMSs appeared very early in the experimental evolution, we hypothesize that such fast epigenetic changes can allow rapid adaptation to the plant stem environment. In addition, we found that the change in DNA methylation upstream RSp0338 remains stable at least for 100 generations outside the host and thus can contribute to long-term adaptation to the host plant. To our knowledge, this is the first study showing a direct link between bacterial epigenetic variation and adaptation to a new environment.
适应通常可以用从亲代传递给后代并在适应种群中固定的有利遗传突变来解释。然而,仅通过遗传突变分析不足以完全解释适应过程,并且有几项研究报告了非遗传(或表观遗传)遗传的存在,这种遗传可以使生物适应新环境。在本工作中,我们测试了 DNA 甲基化作为一种表观遗传修饰形式在植物病原体丁香假单胞菌适应宿主的实验进化中的作用的假设。使用 SMRT-seq 技术,我们分析了在 300 代的 5 种不同植物物种上连续传代 31 个实验进化克隆的甲基组。与祖先克隆的甲基组比较,发现了在 GTWWAC 基序处的 50 个差异甲基化位点(DMS)的列表。这些 DMS 靶向的 39 个基因的基因表达分析显示,差异甲基化与相应基因的差异表达之间存在有限的相关性。只有 1 个基因表现出相关性,即编码 EpsR 调节蛋白的 RSp0338 基因。用于 DNA 甲基化分析的 MSRE-qPCR 技术也发现了 RSp0338 上游的 2 个 DMS。通过定点诱变,我们证明了这 2 个 DMS 在宿主适应中的作用。由于这些 DMS 出现在实验进化的早期,我们假设这种快速的表观遗传变化可以使生物快速适应植物茎环境。此外,我们发现 RSp0338 上游的 DNA 甲基化变化至少在 100 代脱离宿主后仍然稳定,因此可以有助于对宿主植物的长期适应。据我们所知,这是第一项显示细菌表观遗传变异与适应新环境之间直接联系的研究。