Suppr超能文献

哺乳动物末端结合蛋白异二聚体的分子见解。

Molecular insights into mammalian end-binding protein heterodimerization.

机构信息

Biomolecular Research, Structural Biology, the Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland.

出版信息

J Biol Chem. 2010 Feb 19;285(8):5802-14. doi: 10.1074/jbc.M109.068130. Epub 2009 Dec 12.

Abstract

Microtubule plus-end tracking proteins (+TIPs) are involved in many microtubule-based processes. End binding (EB) proteins constitute a highly conserved family of +TIPs. They play a pivotal role in regulating microtubule dynamics and in the recruitment of diverse +TIPs to growing microtubule plus ends. Here we used a combination of methods to investigate the dimerization properties of the three human EB proteins EB1, EB2, and EB3. Based on Förster resonance energy transfer, we demonstrate that the C-terminal dimerization domains of EBs (EBc) can readily exchange their chains in solution. We further document that EB1c and EB3c preferentially form heterodimers, whereas EB2c does not participate significantly in the formation of heterotypic complexes. Measurements of the reaction thermodynamics and kinetics, homology modeling, and mutagenesis provide details of the molecular determinants of homo- versus heterodimer formation of EBc domains. Fluorescence spectroscopy and nuclear magnetic resonance studies in the presence of the cytoskeleton-associated protein-glycine-rich domains of either CLIP-170 or p150(glued) or of a fragment derived from the adenomatous polyposis coli tumor suppressor protein show that chain exchange of EBc domains can be controlled by binding partners. Extension of these studies of the EBc domains to full-length EBs demonstrate that heterodimer formation between EB1 and EB3, but not between EB2 and the other two EBs, occurs both in vitro and in cells as revealed by live cell imaging. Together, our data provide molecular insights for rationalizing the dominant negative control by C-terminal EB domains and form a basis for understanding the functional role of heterotypic chain exchange by EBs in cells.

摘要

微管末端追踪蛋白(+TIPs)参与许多基于微管的过程。末端结合(EB)蛋白构成了高度保守的+TIPs 家族。它们在调节微管动力学和招募不同的+TIPs 到生长的微管末端方面发挥着关键作用。在这里,我们使用了一系列方法来研究三种人类 EB 蛋白 EB1、EB2 和 EB3 的二聚化特性。基于荧光共振能量转移(Förster resonance energy transfer),我们证明了 EBs 的 C 端二聚化结构域(EBc)可以在溶液中轻易地交换它们的链。我们进一步证明,EB1c 和 EB3c 优先形成异源二聚体,而 EB2c 则没有显著参与异源复合物的形成。反应热力学和动力学的测量、同源建模和突变分析提供了 EBc 结构域形成同源和异源二聚体的分子决定因素的详细信息。在存在微管相关蛋白-富含甘氨酸的 CLIP-170 或 p150(glued) 蛋白的糖基化结构域或来源于结直肠腺瘤息肉病(adenomatous polyposis coli)肿瘤抑制蛋白的片段的情况下,荧光光谱和核磁共振研究表明,EBc 结构域的链交换可以被结合伴侣所控制。这些对 EBc 结构域的研究的扩展表明,EB1 和 EB3 之间的异源二聚体形成,而不是 EB2 和其他两个 EBs 之间的异源二聚体形成,既可以在体外发生,也可以在细胞中发生,这可以通过活细胞成像来揭示。总的来说,我们的数据为理解 C 端 EB 结构域的显性负调控提供了分子见解,并为理解 EB 异源链交换在细胞中的功能作用奠定了基础。

相似文献

1
Molecular insights into mammalian end-binding protein heterodimerization.
J Biol Chem. 2010 Feb 19;285(8):5802-14. doi: 10.1074/jbc.M109.068130. Epub 2009 Dec 12.
2
Mammalian end binding proteins control persistent microtubule growth.
J Cell Biol. 2009 Mar 9;184(5):691-706. doi: 10.1083/jcb.200807179. Epub 2009 Mar 2.
3
Interaction of mammalian end binding proteins with CAP-Gly domains of CLIP-170 and p150(glued).
J Struct Biol. 2012 Jan;177(1):160-7. doi: 10.1016/j.jsb.2011.11.010. Epub 2011 Nov 17.
4
EB1 and EB3 control CLIP dissociation from the ends of growing microtubules.
Mol Biol Cell. 2005 Nov;16(11):5334-45. doi: 10.1091/mbc.e05-07-0614. Epub 2005 Sep 7.
5
Mapping multivalency in the CLIP-170-EB1 microtubule plus-end complex.
J Biol Chem. 2019 Jan 18;294(3):918-931. doi: 10.1074/jbc.RA118.006125. Epub 2018 Nov 19.
6
Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition.
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10346-51. doi: 10.1073/pnas.0703876104. Epub 2007 Jun 11.
7
Microtubule plus-end tracking of end-binding protein 1 (EB1) is regulated by CDK5 regulatory subunit-associated protein 2.
J Biol Chem. 2017 May 5;292(18):7675-7687. doi: 10.1074/jbc.M116.759746. Epub 2017 Mar 20.
8
End binding proteins are obligatory dimers.
PLoS One. 2013 Sep 6;8(9):e74448. doi: 10.1371/journal.pone.0074448. eCollection 2013.
9
Adenomatous Polyposis Coli as a Scaffold for Microtubule End-Binding Proteins.
J Mol Biol. 2019 May 3;431(10):1993-2005. doi: 10.1016/j.jmb.2019.03.028. Epub 2019 Apr 6.

引用本文的文献

1
EB-SUN, a new microtubule plus-end tracking protein in .
Mol Biol Cell. 2024 Dec 1;35(12):ar147. doi: 10.1091/mbc.E24-09-0402. Epub 2024 Oct 30.
2
EB-SUN, a New Microtubule Plus-End Tracking Protein in .
bioRxiv. 2024 Sep 11:2024.09.11.612465. doi: 10.1101/2024.09.11.612465.
3
SxIP binding disrupts the constitutive homodimer interface of EB1 and stabilizes EB1 monomer.
Biophys J. 2021 May 18;120(10):2019-2029. doi: 10.1016/j.bpj.2021.03.004. Epub 2021 Mar 16.
4
NMR resonance assignment and structure prediction of the C-terminal domain of the microtubule end-binding protein 3.
PLoS One. 2020 May 18;15(5):e0232338. doi: 10.1371/journal.pone.0232338. eCollection 2020.
5
Analysis of biological networks in the endothelium with biomimetic microsystem platform.
Am J Physiol Lung Cell Mol Physiol. 2019 Sep 1;317(3):L392-L401. doi: 10.1152/ajplung.00392.2018. Epub 2019 Jul 17.
8
Mapping multivalency in the CLIP-170-EB1 microtubule plus-end complex.
J Biol Chem. 2019 Jan 18;294(3):918-931. doi: 10.1074/jbc.RA118.006125. Epub 2018 Nov 19.
9
GTP-binding facilitates EB1 recruitment onto microtubules by relieving its auto-inhibition.
Sci Rep. 2018 Jun 28;8(1):9792. doi: 10.1038/s41598-018-28056-y.
10

本文引用的文献

1
Mitotic regulation of the stability of microtubule plus-end tracking protein EB3 by ubiquitin ligase SIAH-1 and Aurora mitotic kinases.
J Biol Chem. 2009 Oct 9;284(41):28367-28381. doi: 10.1074/jbc.M109.000273. Epub 2009 Aug 19.
2
An EB1-binding motif acts as a microtubule tip localization signal.
Cell. 2009 Jul 23;138(2):366-76. doi: 10.1016/j.cell.2009.04.065.
3
XMAP215-EB1 interaction is required for proper spindle assembly and chromosome segregation in Xenopus egg extract.
Mol Biol Cell. 2009 Jun;20(11):2684-96. doi: 10.1091/mbc.e08-10-1051. Epub 2009 Apr 15.
4
Mammalian end binding proteins control persistent microtubule growth.
J Cell Biol. 2009 Mar 9;184(5):691-706. doi: 10.1083/jcb.200807179. Epub 2009 Mar 2.
5
Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity.
Neuron. 2009 Jan 15;61(1):85-100. doi: 10.1016/j.neuron.2008.11.013.
6
CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites.
J Cell Biol. 2008 Dec 29;183(7):1223-33. doi: 10.1083/jcb.200809190. Epub 2008 Dec 22.
7
Capturing protein tails by CAP-Gly domains.
Trends Biochem Sci. 2008 Nov;33(11):535-45. doi: 10.1016/j.tibs.2008.08.006. Epub 2008 Oct 4.
9
EB1 regulates microtubule dynamics and tubulin sheet closure in vitro.
Nat Cell Biol. 2008 Apr;10(4):415-21. doi: 10.1038/ncb1703. Epub 2008 Mar 23.
10
Tracking the ends: a dynamic protein network controls the fate of microtubule tips.
Nat Rev Mol Cell Biol. 2008 Apr;9(4):309-22. doi: 10.1038/nrm2369. Epub 2008 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验