Suppr超能文献

微管正极端动力学——我们了解微管如何生长吗?:细胞通过促进生长中的微管末端的不同结构转变来促进微管生长。

Microtubule Plus End Dynamics - Do We Know How Microtubules Grow?: Cells boost microtubule growth by promoting distinct structural transitions at growing microtubule ends.

机构信息

Department of Cell and Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA.

出版信息

Bioessays. 2019 Mar;41(3):e1800194. doi: 10.1002/bies.201800194. Epub 2019 Feb 7.

Abstract

Microtubules form a highly dynamic filament network in all eukaryotic cells. Individual microtubules grow by tubulin dimer subunit addition and frequently switch between phases of growth and shortening. These unique dynamics are powered by GTP hydrolysis and drive microtubule network remodeling, which is central to eukaryotic cell biology and morphogenesis. Yet, our knowledge of the molecular events at growing microtubule ends remains incomplete. Here, recent ultrastructural, biochemical and cell biological data are integrated to develop a realistic model of growing microtubule ends comprised of structurally distinct but biochemically overlapping zones. Proteins that recognize microtubule lattice conformations associated with specific tubulin guanosine nucleotide states may independently control major structural transitions at growing microtubule ends. A model is proposed in which tubulin dimer addition and subsequent closure of the MT wall are optimized in cells to achieve rapid physiological microtubule growth.

摘要

微管在所有真核细胞中形成高度动态的丝状网络。单个微管通过微管蛋白二聚体亚基的添加而生长,并经常在生长和缩短的阶段之间切换。这些独特的动力学由 GTP 水解提供动力,并驱动微管网络重塑,这是真核细胞生物学和形态发生的核心。然而,我们对生长中的微管末端的分子事件的了解仍然不完整。在这里,最近的超微结构、生化和细胞生物学数据被整合在一起,以开发一个由结构上不同但生化上重叠的区域组成的生长中的微管末端的现实模型。识别与特定微管蛋白鸟嘌呤核苷酸状态相关的微管晶格构象的蛋白质可以独立地控制生长中的微管末端的主要结构转变。提出了一个模型,其中微管蛋白二聚体的添加和随后 MT 壁的闭合在细胞中被优化,以实现快速的生理微管生长。

相似文献

3
GDP-tubulin incorporation into growing microtubules modulates polymer stability.
J Biol Chem. 2010 Jun 4;285(23):17507-13. doi: 10.1074/jbc.M109.099515. Epub 2010 Apr 6.
4
Intrinsic bending and structural rearrangement of tubulin dimer: molecular dynamics simulations and coarse-grained analysis.
Biophys J. 2008 Sep;95(5):2487-99. doi: 10.1529/biophysj.108.129072. Epub 2008 May 30.
5
The role of tubulin-tubulin lattice contacts in the mechanism of microtubule dynamic instability.
Nat Struct Mol Biol. 2018 Jul;25(7):607-615. doi: 10.1038/s41594-018-0087-8. Epub 2018 Jul 2.
6
Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability.
PLoS Comput Biol. 2019 Aug 30;15(8):e1007327. doi: 10.1371/journal.pcbi.1007327. eCollection 2019 Aug.
8
Distinct roles of doublecortin modulating the microtubule cytoskeleton.
EMBO J. 2006 Oct 4;25(19):4448-57. doi: 10.1038/sj.emboj.7601335. Epub 2006 Sep 7.
9
Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy.
J Cell Biol. 2012 Aug 6;198(3):315-22. doi: 10.1083/jcb.201201161. Epub 2012 Jul 30.
10
Doublecortin Is Excluded from Growing Microtubule Ends and Recognizes the GDP-Microtubule Lattice.
Curr Biol. 2016 Jun 20;26(12):1549-1555. doi: 10.1016/j.cub.2016.04.020. Epub 2016 May 26.

引用本文的文献

1
EB3-informed dynamics of the microtubule stabilizing cap during stalled growth.
Biophys J. 2025 Jan 21;124(2):227-244. doi: 10.1016/j.bpj.2024.11.3314. Epub 2024 Nov 27.
3
Immunofluorescence study of cytoskeleton in endothelial cells induced with malaria sera.
Malar J. 2024 Jan 5;23(1):10. doi: 10.1186/s12936-023-04833-7.
4
Effects on cell cycle progression and cytoskeleton organization of five spp. venoms in cell culture-based assays.
Heliyon. 2023 Jul 19;9(7):e18317. doi: 10.1016/j.heliyon.2023.e18317. eCollection 2023 Jul.
6
Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components.
Genes (Basel). 2023 Jan 20;14(2):272. doi: 10.3390/genes14020272.
9
Photopharmacology of Antimitotic Agents.
Int J Mol Sci. 2022 May 18;23(10):5657. doi: 10.3390/ijms23105657.
10
Optogenetic EB1 inactivation shortens metaphase spindles by disrupting cortical force-producing interactions with astral microtubules.
Curr Biol. 2022 Mar 14;32(5):1197-1205.e4. doi: 10.1016/j.cub.2022.01.017. Epub 2022 Jan 31.

本文引用的文献

2
Microtubule structure by cryo-EM: snapshots of dynamic instability.
Essays Biochem. 2018 Dec 7;62(6):737-751. doi: 10.1042/EBC20180031.
4
Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation.
Science. 2018 Aug 24;361(6404). doi: 10.1126/science.aau1504.
5
The role of tubulin-tubulin lattice contacts in the mechanism of microtubule dynamic instability.
Nat Struct Mol Biol. 2018 Jul;25(7):607-615. doi: 10.1038/s41594-018-0087-8. Epub 2018 Jul 2.
6
Separating the effects of nucleotide and EB binding on microtubule structure.
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6191-E6200. doi: 10.1073/pnas.1802637115. Epub 2018 Jun 18.
7
Design principles of a microtubule polymerase.
Elife. 2018 Jun 13;7:e34574. doi: 10.7554/eLife.34574.
8
Microtubule architecture in vitro and in cells revealed by cryo-electron tomography.
Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):572-584. doi: 10.1107/S2059798318001948. Epub 2018 Apr 11.
9
Microtubules grow by the addition of bent guanosine triphosphate tubulin to the tips of curved protofilaments.
J Cell Biol. 2018 Aug 6;217(8):2691-2708. doi: 10.1083/jcb.201802138. Epub 2018 May 23.
10
Local control of intracellular microtubule dynamics by EB1 photodissociation.
Nat Cell Biol. 2018 Mar;20(3):252-261. doi: 10.1038/s41556-017-0028-5. Epub 2018 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验