Suppr超能文献

通过人工神经网络分析不同蛋白质、脂肪和碳水化合物代谢能百分含量的日粮对鸡生长性能的影响。

Growth analysis of chickens fed diets varying in the percentage of metabolizable energy provided by protein, fat, and carbohydrate through artificial neural network.

机构信息

Center of Excellence in the Animal Sciences Department, Ferdowsi University of Mashhad, Mashhad, Iran, 91775-1163.

出版信息

Poult Sci. 2010 Jan;89(1):173-9. doi: 10.3382/ps.2009-00125.

Abstract

A radial basis function neural network (RBFN) approach was used to develop a multi-input, multi-output model for the effect of diets varying in the percentage of ME provided by protein (% ME(P)), fat (% ME(F)), and carbohydrate (% ME(C)) on live weight gain, protein gain, and fat gain in growing chickens. Thirty-three data lines representing response of the White Leghorn male chickens during 23 to 33 d of age to the diets varying in the % ME(P), % ME(F), and % ME(C) were obtained from literature and used to train the RBFN model. The prediction values of the RBFN model were compared with those obtained by multiple regression models to assess the fitness of these 2 methods. The fitness of the models was tested using R2, MS error, mean absolute deviation, residual SD, and bias. The developed RBFN model was used to evaluate the relative importance of each input parameter on chicken growth using a sensitivity analysis method. The calculated statistical values corresponding to the RBFN model showed a higher accuracy of prediction than multiple regression models. The sensitivity analysis on the model indicated that dietary % ME(P) is the most important variable in the growth of chickens, followed by dietary % ME(F) and % ME(C). It was found that the RBFN model is an appropriate tool to recognize the patterns of input-output data or to predict chicken growth in terms of live weight gain, protein gain, and fat gain given the proportion of dietary percentage of ME intake supplied through protein, fat, or carbohydrates.

摘要

径向基函数神经网络 (RBFN) 方法被用于建立一个多输入、多输出模型,以研究蛋白质 (ME%)、脂肪 (ME%) 和碳水化合物 (ME%) 提供的能量百分比不同的日粮对生长鸡的体重增加、蛋白质增加和脂肪增加的影响。从文献中获得了 33 条数据线,代表白来航公雏鸡在 23 至 33 日龄时对蛋白质 (ME%)、脂肪 (ME%) 和碳水化合物 (ME%) 百分比不同的日粮的反应,并用于训练 RBFN 模型。使用 R2、MS 误差、平均绝对偏差、残差 SD 和偏差来比较 RBFN 模型的预测值和多元回归模型的预测值,以评估这两种方法的拟合程度。通过测试模型的 R2、MS 误差、平均绝对偏差、残差 SD 和偏差,评估模型的拟合程度。使用敏感性分析方法,通过 RBFN 模型评估每个输入参数对鸡生长的相对重要性。与多元回归模型相比,所开发的 RBFN 模型的计算统计值显示出更高的预测精度。对模型的敏感性分析表明,日粮 ME(P)百分比是影响鸡生长的最重要变量,其次是日粮 ME(F)百分比和 ME(C)百分比。研究结果表明,RBFN 模型是一种合适的工具,可以识别输入输出数据的模式,或者根据蛋白质、脂肪或碳水化合物提供的日粮 ME 摄入量的比例,预测生长鸡的体重增加、蛋白质增加和脂肪增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验