Jamshidi S, Yadollahi A, Ahmadi H, Arab M M, Eftekhari M
Department of Horticulture, Faculty of Agriculture, Tarbiat Modares University Tehran, Iran.
Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University Tehran, Iran.
Front Plant Sci. 2016 Mar 29;7:274. doi: 10.3389/fpls.2016.00274. eCollection 2016.
Two modeling techniques [artificial neural network-genetic algorithm (ANN-GA) and stepwise regression analysis] were used to predict the effect of medium macro-nutrients on in vitro performance of pear rootstocks (OHF and Pyrodwarf). The ANN-GA described associations between investigating eight macronutrients (NO[Formula: see text], NH[Formula: see text], Ca(2+), K(+), Mg(2+), PO[Formula: see text], SO[Formula: see text], and Cl(-)) and explant growth parameters [proliferation rate (PR), shoot length (SL), shoot tip necrosis (STN), chlorosis (Chl), and vitrification (Vitri)]. ANN-GA revealed a substantially higher accuracy of prediction than for regression models. According to the ANN-GA results, among the input variables concentrations (mM), NH[Formula: see text] (301.7), and NO[Formula: see text], NH[Formula: see text] (64), SO[Formula: see text] (54.1), K(+) (40.4), and NO[Formula: see text] (35.1) in OHF and Ca(2+) (23.7), NH[Formula: see text] (10.7), NO[Formula: see text] (9.1), NH[Formula: see text] (317.6), and NH[Formula: see text] (79.6) in Pyrodwarf had the highest values of VSR in data set, respectively, for PR, SL, STN, Chl, and Vitri. The ANN-GA showed that media containing (mM) 62.5 NO[Formula: see text], 5.7 NH[Formula: see text], 2.7 Ca(2+), 31.5 K(+), 3.3 Mg(2+), 2.6 PO[Formula: see text], 5.6 SO[Formula: see text], and 3.5 Cl(-) could lead to optimal PR for OHF and optimal PR for Pyrodwarf may be obtained with media containing 25.6 NO[Formula: see text], 13.1 NH[Formula: see text], 5.5 Ca(2+), 35.7 K(+), 1.5 Mg(2+), 2.1 PO[Formula: see text], 3.6 SO[Formula: see text], and 3 Cl(-).
两种建模技术[人工神经网络-遗传算法(ANN-GA)和逐步回归分析]被用于预测培养基中大量营养素对梨砧木(OHF和Pyrodwarf)离体培养性能的影响。ANN-GA描述了所研究的八种大量营养素(硝酸根离子、铵根离子、钙离子、钾离子、镁离子、磷酸根离子、硫酸根离子和氯离子)与外植体生长参数[增殖率(PR)、茎长(SL)、茎尖坏死(STN)、黄化(Chl)和玻璃化(Vitri)]之间的关联。ANN-GA显示出比回归模型更高的预测准确性。根据ANN-GA的结果,在输入变量浓度(mM)中,OHF中的铵根离子(301.7)以及硝酸根离子、铵根离子(64)、硫酸根离子(54.1)、钾离子(40.4)和硝酸根离子(35.1),以及Pyrodwarf中的钙离子(23.7)、铵根离子(10.7)、硝酸根离子(9.1)、铵根离子(317.6)和铵根离子(79.6)在数据集中分别对PR、SL、STN、Chl和Vitri具有最高的VSR值。ANN-GA表明,含有(mM)62.5硝酸根离子、5.7铵根离子、2.7钙离子、31.5钾离子、3.3镁离子、2.6磷酸根离子、5.6硫酸根离子和3.5氯离子的培养基可使OHF获得最佳PR,而含有25.6硝酸根离子、13.1铵根离子、5.5钙离子、35.7钾离子、1.5镁离子、2.1磷酸根离子、3.6硫酸根离子和3氯离子的培养基可能使Pyrodwarf获得最佳PR。