Suppr超能文献

γ-微管蛋白在人乳腺癌细胞系中因可溶性增加而发生去定位。

Delocalization of gamma-tubulin due to increased solubility in human breast cancer cell lines.

机构信息

University of Maryland School of Medicine and Graduate Program in Life Sciences, Marlene and Stewart Greenebaum NCI Cancer Center, Department of Physiology, Baltimore, MD, USA.

出版信息

Cancer Biol Ther. 2010 Jan;9(1):66-76. doi: 10.4161/cbt.9.1.10451. Epub 2010 Jan 28.

Abstract

The centrosome is the major organelle responsible for the nucleation and organization of microtubules into arrays. Recent studies demonstrate that microtubules can nucleate outside the centrosome. The molecular mechanisms controlling acentrosomal microtubule nucleation are currently poorly defined, and the function of this type of microtubule regulation in tumor cell biology is particularly unclear. Since microtubule nucleation is initiated by the gamma-tubulin protein, we examined the regulation of gamma-tubulin in a panel of human breast tumor cell lines, ranging from non-tumorigenic to highly aggressive. We have identified a more dispersive subcellular localization of gamma-tubulin in aggressive breast cancer cell lines, while gamma-tubulin localization remains largely centrosomal in non-aggressive cell lines. Delocalization of gamma-tubulin occurs independently from changes in protein expression and is therefore regulated at the post-translational level. Subcellular fractionation revealed that tumor cell lines show an aberrantly increased release of gamma-tubulin into a soluble cytoplasmic fraction, with the most dramatic changes observed in tumor cell lines of greater aggressiveness. Extraction of soluble gamma-tubulin revealed acentrosomal incorporation of gamma-tubulin in cytoplasmic microtubules and along cell junctions. Moreover, acentrosomal delocalization of gamma-tubulin yielded resistance to colchicine-mediated microtubule collapse. These findings support a model where the solubility of gamma-tubulin can be altered through post-translational modification and provides a new mechanism for microtubule dysregulation in breast cancer. Gamma-tubulin that is delocalized from the centrosome can still clearly be incorporated into filaments, and defines a novel mechanism for tumor cells to develop resistance to microtubule-targeted chemotherapies.

摘要

中心体是负责微管成核和排列的主要细胞器。最近的研究表明,微管可以在中心体之外成核。目前,控制无中心体微管成核的分子机制还不清楚,这种微管调节在肿瘤细胞生物学中的功能尤其不清楚。由于微管成核是由γ-微管蛋白启动的,我们在一系列人乳腺癌肿瘤细胞系中检查了γ-微管蛋白的调节,范围从非肿瘤性到高度侵袭性。我们发现,在侵袭性乳腺癌细胞系中,γ-微管蛋白的亚细胞定位更加分散,而在非侵袭性细胞系中,γ-微管蛋白的定位仍然主要在中心体。γ-微管蛋白的定位改变与蛋白表达的变化无关,因此是在翻译后水平上受到调节的。亚细胞分级分离显示,肿瘤细胞系表现出异常增加的γ-微管蛋白释放到可溶性细胞质部分,在侵袭性更强的肿瘤细胞系中观察到的变化最为显著。可溶性γ-微管蛋白的提取显示,γ-微管蛋白在细胞质微管中和沿细胞连接处发生无中心体的整合。此外,γ-微管蛋白的无中心体定位导致对秋水仙碱介导的微管崩溃的抗性。这些发现支持了一种模型,即通过翻译后修饰可以改变γ-微管蛋白的可溶性,并为乳腺癌中微管失调提供了一种新的机制。从中心体上分离出来的γ-微管蛋白仍然可以明显地整合到纤维中,这为肿瘤细胞对微管靶向化疗药物产生抗性定义了一种新的机制。

相似文献

1
Delocalization of gamma-tubulin due to increased solubility in human breast cancer cell lines.
Cancer Biol Ther. 2010 Jan;9(1):66-76. doi: 10.4161/cbt.9.1.10451. Epub 2010 Jan 28.
2
CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex.
Mol Biol Cell. 2008 Jan;19(1):115-25. doi: 10.1091/mbc.e07-04-0371. Epub 2007 Oct 24.
3
Androgen and Src signaling regulate centrosome activity.
J Cell Sci. 2010 Jun 15;123(Pt 12):2094-102. doi: 10.1242/jcs.057505. Epub 2010 May 25.
4
Inhibition of proteasome activity impairs centrosome-dependent microtubule nucleation and organization.
Mol Biol Cell. 2008 Mar;19(3):1220-9. doi: 10.1091/mbc.e06-12-1140. Epub 2007 Dec 19.
5
Axin localizes to the centrosome and is involved in microtubule nucleation.
EMBO Rep. 2009 Jun;10(6):606-13. doi: 10.1038/embor.2009.45. Epub 2009 Apr 24.
7
Regulation of microtubule nucleation mediated by γ-tubulin complexes.
Protoplasma. 2017 May;254(3):1187-1199. doi: 10.1007/s00709-016-1070-z. Epub 2017 Jan 10.
8
GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation.
Biochim Biophys Acta. 2016 Jun;1863(6 Pt A):1282-97. doi: 10.1016/j.bbamcr.2016.03.016. Epub 2016 Mar 22.
9
Centrosome-microtubule nucleation.
J Cell Sci. 1997 Feb;110 ( Pt 3):295-300. doi: 10.1242/jcs.110.3.295.
10
The centrosomal recruitment of γ-tubulin and its microtubule nucleation activity is α-fodrin guided.
Cell Cycle. 2023 Feb;22(3):361-378. doi: 10.1080/15384101.2022.2119516. Epub 2022 Sep 9.

引用本文的文献

1
Dysregulation of Microtubule Nucleating Proteins in Cancer Cells.
Cancers (Basel). 2021 Nov 11;13(22):5638. doi: 10.3390/cancers13225638.
2
Gravin-associated kinase signaling networks coordinate γ-tubulin organization at mitotic spindle poles.
J Biol Chem. 2020 Oct 2;295(40):13784-13797. doi: 10.1074/jbc.RA120.014791. Epub 2020 Jul 30.
3
IQGAP1 control of centrosome function defines distinct variants of triple negative breast cancer.
Oncotarget. 2020 Jun 30;11(26):2493-2511. doi: 10.18632/oncotarget.27623.
4
γ-Tubulin⁻γ-Tubulin Interactions as the Basis for the Formation of a Meshwork.
Int J Mol Sci. 2018 Oct 19;19(10):3245. doi: 10.3390/ijms19103245.
5
The GTPase domain of gamma-tubulin is required for normal mitochondrial function and spatial organization.
Commun Biol. 2018 May 3;1:37. doi: 10.1038/s42003-018-0037-3. eCollection 2018.
6
γ-tubulin as a signal-transducing molecule and meshwork with therapeutic potential.
Signal Transduct Target Ther. 2018 Sep 14;3:24. doi: 10.1038/s41392-018-0021-x. eCollection 2018.
7
Population-dependent Intron Retention and DNA Methylation in Breast Cancer.
Mol Cancer Res. 2018 Mar;16(3):461-469. doi: 10.1158/1541-7786.MCR-17-0227. Epub 2018 Jan 12.
8
Characterization of Adenomatous Polyposis Coli Protein Dynamics and Localization at the Centrosome.
Cancers (Basel). 2016 Apr 30;8(5):47. doi: 10.3390/cancers8050047.
9
γ-Tubulin complexes in microtubule nucleation and beyond.
Mol Biol Cell. 2015 Sep 1;26(17):2957-62. doi: 10.1091/mbc.E14-11-1514.

本文引用的文献

2
Centrosomes and cancer: how cancer cells divide with too many centrosomes.
Cancer Metastasis Rev. 2009 Jun;28(1-2):85-98. doi: 10.1007/s10555-008-9163-6.
5
Epithelial mesenchymal transition traits in human breast cancer cell lines.
Clin Exp Metastasis. 2008;25(6):629-42. doi: 10.1007/s10585-008-9170-6. Epub 2008 May 7.
6
Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers.
Nature. 2008 Feb 28;451(7182):1116-20. doi: 10.1038/nature06633. Epub 2008 Feb 10.
7
BRCA1 regulates gamma-tubulin binding to centrosomes.
Cancer Biol Ther. 2007 Dec;6(12):1853-7. doi: 10.4161/cbt.6.12.5164. Epub 2007 Oct 13.
8
Overview of resistance to systemic therapy in patients with breast cancer.
Adv Exp Med Biol. 2007;608:1-22. doi: 10.1007/978-0-387-74039-3_1.
9
Network modeling links breast cancer susceptibility and centrosome dysfunction.
Nat Genet. 2007 Nov;39(11):1338-49. doi: 10.1038/ng.2007.2. Epub 2007 Oct 7.
10
Mechanisms of multidrug resistance: the potential role of microtubule-stabilizing agents.
Ann Oncol. 2007 Jul;18 Suppl 5:v3-8. doi: 10.1093/annonc/mdm172.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验