Suppr超能文献

通过批量质量保证抽样评估急性营养不良患病率的整群设计:一项计算机模拟验证研究

Cluster designs to assess the prevalence of acute malnutrition by lot quality assurance sampling: a validation study by computer simulation.

作者信息

Olives Casey, Pagano Marcello, Deitchler Megan, Hedt Bethany L, Egge Kari, Valadez Joseph J

出版信息

J R Stat Soc Ser A Stat Soc. 2009 Apr;172(2):495-510. doi: 10.1111/j.1467-985X.2008.00572.x.

Abstract

Traditional lot quality assurance sampling (LQAS) methods require simple random sampling to guarantee valid results. However, cluster sampling has been proposed to reduce the number of random starting points. This study uses simulations to examine the classification error of two such designs, a 67x3 (67 clusters of three observations) and a 33x6 (33 clusters of six observations) sampling scheme to assess the prevalence of global acute malnutrition (GAM). Further, we explore the use of a 67x3 sequential sampling scheme for LQAS classification of GAM prevalence. Results indicate that, for independent clusters with moderate intracluster correlation for the GAM outcome, the three sampling designs maintain approximate validity for LQAS analysis. Sequential sampling can substantially reduce the average sample size that is required for data collection. The presence of intercluster correlation can impact dramatically the classification error that is associated with LQAS analysis.

摘要

传统的批量质量保证抽样(LQAS)方法需要简单随机抽样以保证结果有效。然而,有人提出采用整群抽样来减少随机起始点的数量。本研究通过模拟来检验两种此类设计(一种是67×3(67个包含三个观察值的群)和一种是33×6(33个包含六个观察值的群)抽样方案)在评估全球急性营养不良(GAM)患病率时的分类误差。此外,我们探索将67×3序贯抽样方案用于GAM患病率的LQAS分类。结果表明,对于GAM结果具有中等群内相关性的独立群,这三种抽样设计在LQAS分析中保持近似有效性。序贯抽样可大幅减少数据收集所需的平均样本量。群间相关性的存在会显著影响与LQAS分析相关的分类误差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验