Department of Biostatistics, University of Washington, Seattle, Washington, USA.
PLoS Negl Trop Dis. 2012;6(9):e1806. doi: 10.1371/journal.pntd.0001806. Epub 2012 Sep 6.
Originally a binary classifier, Lot Quality Assurance Sampling (LQAS) has proven to be a useful tool for classification of the prevalence of Schistosoma mansoni into multiple categories (≤10%, >10 and <50%, ≥50%), and semi-curtailed sampling has been shown to effectively reduce the number of observations needed to reach a decision. To date the statistical underpinnings for Multiple Category-LQAS (MC-LQAS) have not received full treatment. We explore the analytical properties of MC-LQAS, and validate its use for the classification of S. mansoni prevalence in multiple settings in East Africa.
We outline MC-LQAS design principles and formulae for operating characteristic curves. In addition, we derive the average sample number for MC-LQAS when utilizing semi-curtailed sampling and introduce curtailed sampling in this setting. We also assess the performance of MC-LQAS designs with maximum sample sizes of n=15 and n=25 via a weighted kappa-statistic using S. mansoni data collected in 388 schools from four studies in East Africa.
Overall performance of MC-LQAS classification was high (kappa-statistic of 0.87). In three of the studies, the kappa-statistic for a design with n=15 was greater than 0.75. In the fourth study, where these designs performed poorly (kappa-statistic less than 0.50), the majority of observations fell in regions where potential error is known to be high. Employment of semi-curtailed and curtailed sampling further reduced the sample size by as many as 0.5 and 3.5 observations per school, respectively, without increasing classification error.
CONCLUSION/SIGNIFICANCE: This work provides the needed analytics to understand the properties of MC-LQAS for assessing the prevalance of S. mansoni and shows that in most settings a sample size of 15 children provides a reliable classification of schools.
最初是一个二分类器,批量质量保证抽样(LQAS)已被证明是一种有用的工具,可将曼氏血吸虫的流行率分为多个类别(≤10%、>10%且<50%、≥50%),并且已证明半截尾抽样可以有效地减少做出决策所需的观察数量。迄今为止,多类别-LQAS(MC-LQAS)的统计基础尚未得到充分处理。我们探讨了 MC-LQAS 的分析特性,并验证了其在东非多个环境中用于曼氏血吸虫流行率分类的用途。
我们概述了 MC-LQAS 的设计原则和操作特征曲线公式。此外,我们在利用半截尾抽样时得出了 MC-LQAS 的平均样本数量,并在这种情况下引入了截尾抽样。我们还通过加权 Kappa 统计量评估了最大样本量为 n=15 和 n=25 的 MC-LQAS 设计的性能,使用东非四个研究中的 388 所学校采集的曼氏血吸虫数据。
MC-LQAS 分类的整体性能很高(Kappa 统计量为 0.87)。在三项研究中,n=15 设计的 Kappa 统计量大于 0.75。在第四项研究中,这些设计的性能较差(Kappa 统计量小于 0.50),大多数观察结果落在潜在误差已知较高的区域。采用半截尾和截尾抽样分别使每个学校的样本量减少了多达 0.5 和 3.5 个,而不会增加分类错误。
结论/意义:这项工作提供了理解 MC-LQAS 用于评估曼氏血吸虫流行率的属性所需的分析方法,并表明在大多数情况下,15 名儿童的样本量可以提供可靠的学校分类。