Collaborations in Chemistry, Jenkintown, Pennsylvania, United States of America.
PLoS Comput Biol. 2009 Dec;5(12):e1000594. doi: 10.1371/journal.pcbi.1000594. Epub 2009 Dec 11.
Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human pregnane X receptor (PXR) which in turn is activated by structurally diverse agonists including steroid hormones. Activation of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes. Reliable computational prediction of PXR agonists would be valuable for pharmaceutical and toxicological research. There has been limited success with structure-based modeling approaches to predict human PXR activators. Slightly better success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship (QSAR) analysis, pharmacophore modeling and machine learning. In this study, we present a comprehensive analysis focused on prediction of 115 steroids for ligand binding activity towards human PXR. Six crystal structures were used as templates for docking and ligand-based modeling approaches (two-, three-, four- and five-dimensional analyses). The best success at external prediction was achieved with 5D-QSAR. Bayesian models with FCFP_6 descriptors were validated after leaving a large percentage of the dataset out and using an external test set. Docking of ligands to the PXR structure co-crystallized with hyperforin had the best statistics for this method. Sulfated steroids (which are activators) were consistently predicted as non-activators while, poorly predicted steroids were docked in a reverse mode compared to 5alpha-androstan-3beta-ol. Modeling of human PXR represents a complex challenge by virtue of the large, flexible ligand-binding cavity. This study emphasizes this aspect, illustrating modest success using the largest quantitative data set to date and multiple modeling approaches.
一些参与外来化合物解毒和细胞凋亡的基因的转录调控是通过人妊娠相关 X 受体 (PXR) 进行的,而 PXR 又被包括甾体激素在内的结构多样的激动剂激活。PXR 的激活有可能引发不良反应,改变药物药代动力学或扰乱生理过程。可靠的 PXR 激动剂计算预测对于药物和毒理学研究将是有价值的。基于结构的建模方法预测人 PXR 激动剂的成功有限。基于配体的建模方法(包括定量构效关系 (QSAR) 分析、药效团建模和机器学习)取得了略好的成功。在这项研究中,我们提出了一项全面的分析,重点是预测 115 种甾体化合物对人 PXR 的配体结合活性。使用了六个晶体结构作为对接和基于配体的建模方法(二维、三维、四维和五维分析)的模板。在外部预测中,5D-QSAR 取得了最佳成功。在留出大量数据集并使用外部测试集后,使用 FCFP_6 描述符的贝叶斯模型进行了验证。与 hyperforin 共结晶的 PXR 结构的配体对接具有该方法的最佳统计数据。硫酸化甾体(其为激动剂)被一致预测为非激动剂,而预测效果差的甾体则以与 5alpha-雄烷-3beta-醇相反的方式对接。由于大的、灵活的配体结合腔,人 PXR 的建模代表了一个复杂的挑战。这项研究强调了这一方面,展示了使用迄今为止最大的定量数据集和多种建模方法取得的适度成功。