Suppr超能文献

开发和实验验证正则化机器学习模型,以检测新型、结构独特的 PXR 激活剂。

Development and Experimental Validation of Regularized Machine Learning Models Detecting New, Structurally Distinct Activators of PXR.

机构信息

Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria.

Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, University of Tübingen, 70376 Stuttgart, Germany.

出版信息

Cells. 2022 Apr 7;11(8):1253. doi: 10.3390/cells11081253.

Abstract

The pregnane X receptor (PXR) regulates the metabolism of many xenobiotic and endobiotic substances. In consequence, PXR decreases the efficacy of many small-molecule drugs and induces drug-drug interactions. The prediction of PXR activators with theoretical approaches such as machine learning (ML) proves challenging due to the ligand promiscuity of PXR, which is related to its large and flexible binding pocket. In this work we demonstrate, by the example of random forest models and support vector machines, that classifiers generated following classical training procedures often fail to predict PXR activity for compounds that are dissimilar from those in the training set. We present a novel regularization technique that penalizes the gap between a model's training and validation performance. On a challenging test set, this technique led to improvements in Matthew correlation coefficients (MCCs) by up to 0.21. Using these regularized ML models, we selected 31 compounds that are structurally distinct from known PXR ligands for experimental validation. Twelve of them were confirmed as active in the cellular PXR ligand-binding domain assembly assay and more hits were identified during follow-up studies. Comprehensive analysis of key features of PXR biology conducted for three representative hits confirmed their ability to activate the PXR.

摘要

妊娠相关 X 受体 (PXR) 调节许多外源和内源物质的代谢。因此,PXR 降低了许多小分子药物的疗效,并诱导了药物-药物相互作用。由于 PXR 的配体混杂性,使用机器学习 (ML) 等理论方法预测 PXR 激活剂具有挑战性,这与其大而灵活的结合口袋有关。在这项工作中,我们通过随机森林模型和支持向量机的示例证明,遵循经典训练程序生成的分类器通常无法预测与训练集中化合物不相似的化合物的 PXR 活性。我们提出了一种新的正则化技术,该技术惩罚模型的训练和验证性能之间的差距。在具有挑战性的测试集中,该技术将马修相关系数 (MCC) 提高了 0.21。使用这些正则化的 ML 模型,我们选择了 31 种与已知 PXR 配体在结构上不同的化合物进行实验验证。其中 12 种在细胞 PXR 配体结合域组装测定中被证实具有活性,并且在后续研究中发现了更多的活性化合物。对三个代表性激动剂进行的 PXR 生物学关键特征的综合分析证实了它们激活 PXR 的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0b3/9029776/8cf6292009f7/cells-11-01253-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验