Suppr超能文献

基于口服葡萄糖耐量试验数据的随机微分方程在群体模型中的预测性能。

Predictive performance for population models using stochastic differential equations applied on data from an oral glucose tolerance test.

机构信息

Technical University of Denmark, Lyngby, Denmark.

出版信息

J Pharmacokinet Pharmacodyn. 2010 Feb;37(1):85-98. doi: 10.1007/s10928-009-9145-5. Epub 2009 Dec 16.

Abstract

Several articles have investigated stochastic differential equations (SDEs) in PK/PD models, but few have quantitatively investigated the benefits to predictive performance of models based on real data. Estimation of first phase insulin secretion which reflects beta-cell function using models of the OGTT is a difficult problem in need of further investigation. The present work aimed at investigating the power of SDEs to predict the first phase insulin secretion (AIR (0-8)) in the IVGTT based on parameters obtained from the minimal model of the OGTT, published by Breda et al. (Diabetes 50(1):150-158, 2001). In total 174 subjects underwent both an OGTT and a tolbutamide modified IVGTT. Estimation of parameters in the oral minimal model (OMM) was performed using the FOCE-method in NONMEM VI on insulin and C-peptide measurements. The suggested SDE models were based on a continuous AR(1) process, i.e. the Ornstein-Uhlenbeck process, and the extended Kalman filter was implemented in order to estimate the parameters of the models. Inclusion of the Ornstein-Uhlenbeck (OU) process caused improved description of the variation in the data as measured by the autocorrelation function (ACF) of one-step prediction errors. A main result was that application of SDE models improved the correlation between the individual first phase indexes obtained from OGTT and AIR (0-8) (r = 0.36 to r = 0.49 and r = 0.32 to r = 0.47 with C-peptide and insulin measurements, respectively). In addition to the increased correlation also the properties of the indexes obtained using the SDE models more correctly assessed the properties of the first phase indexes obtained from the IVGTT. In general it is concluded that the presented SDE approach not only caused autocorrelation of errors to decrease but also improved estimation of clinical measures obtained from the glucose tolerance tests. Since, the estimation time of extended models was not heavily increased compared to basic models, the applied method is concluded to have high relevance not only in theory but also in practice.

摘要

已有多篇文章研究了 PK/PD 模型中的随机微分方程(SDE),但很少有文章定量研究基于真实数据的模型对预测性能的益处。使用 OGTT 模型估算反映β细胞功能的第一时相胰岛素分泌是一个需要进一步研究的难题。本研究旨在探讨 SDE 在基于 Breda 等人发表的 OGTT 最小模型(Diabetes 50(1):150-158, 2001)获得的参数,预测 IVGTT 中第一时相胰岛素分泌(AIR(0-8))方面的预测能力。共 174 名受试者同时接受了 OGTT 和甲苯磺丁脲改良 IVGTT 检查。使用 NONMEM VI 中的 FOCE 法在胰岛素和 C 肽测量值上对口服最小模型(OMM)的参数进行估算。所提出的 SDE 模型基于连续 AR(1)过程,即 Ornstein-Uhlenbeck 过程,并且实施了扩展卡尔曼滤波器来估算模型的参数。纳入 Ornstein-Uhlenbeck(OU)过程可通过一步预测误差自相关函数(ACF)来提高对数据变异性的描述。主要结果是,SDE 模型的应用提高了从 OGTT 和 AIR(0-8)获得的个体第一时相指数之间的相关性(r=0.36 至 r=0.49 和 r=0.32 至 r=0.47,分别与 C 肽和胰岛素测量值相关)。除了相关性增加之外,使用 SDE 模型获得的指数的特性也更正确地评估了从 IVGTT 获得的第一时相指数的特性。总体而言,研究结果表明,所提出的 SDE 方法不仅降低了误差的自相关,而且还改善了从葡萄糖耐量试验获得的临床指标的估算。由于与基本模型相比,扩展模型的估计时间并没有大幅增加,因此该方法不仅在理论上,而且在实践中都具有很高的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验