Suppr超能文献

直接展示与不同腺苷酸环化酶同工型相关的离散 Ca2+ 微区。

Direct demonstration of discrete Ca2+ microdomains associated with different isoforms of adenylyl cyclase.

机构信息

Department of Pharmacology, Tennis Court Road, University of Cambridge, CB2 1PD, UK.

出版信息

J Cell Sci. 2010 Jan 1;123(Pt 1):107-17. doi: 10.1242/jcs.062067.

Abstract

Ca(2+)-sensitive adenylyl cyclases (ACs) orchestrate dynamic interplay between Ca(2+) and cAMP that is a crucial feature of cellular homeostasis. Significantly, these ACs are highly selective for capacitative Ca(2+) entry (CCE) over other modes of Ca(2+) increase. To directly address the possibility that these ACs reside in discrete Ca(2+) microdomains, we tethered a Ca(2+) sensor, GCaMP2, to the N-terminus of Ca(2+)-stimulated AC8. GCaMP2-AC8 measurements were compared with global, plasma membrane (PM)-targeted or Ca(2+)-insensitive AC2-targeted GCaMP2. In intact cells, GCaMP2-AC8 responded rapidly to CCE, but was largely unresponsive to other types of Ca(2+) rise. The global GCaMP2, PM-targeted GCaMP2 and GCaMP2-AC2 sensors reported large Ca(2+) fluxes during Ca(2+) mobilization and non-specific Ca(2+) entry, but were less responsive to CCE than GCaMP2-AC8. Our data reveal that different AC isoforms localize to distinct Ca(2+)-microdomains within the plasma membrane. AC2, which is regulated via protein kinase C, resides in a microdomain that is exposed to a range of widespread Ca(2+) signals seen throughout the cytosol. By contrast, a unique Ca(2+) microdomain surrounds AC8 that promotes selectivity for Ca(2+) signals arising from CCE, and optimizes CCE-mediated cAMP synthesis. This direct demonstration of discrete compartmentalized Ca(2+) signals associated with specific signalling proteins provides a remarkable insight into the functional organization of signalling microdomains.

摘要

钙敏型腺苷酸环化酶(ACs)协调细胞内钙(Ca2+)和环腺苷酸(cAMP)之间的动态相互作用,这是细胞内稳态的关键特征。值得注意的是,这些 ACs 对电容性钙内流(CCE)的选择性高于其他形式的 Ca2+增加。为了直接研究这些 ACs 是否位于离散的 Ca2+微区中,我们将钙传感器 GCaMP2 连接到 Ca2+刺激的 AC8 的 N 端。将 GCaMP2-AC8 的测量值与全局、质膜(PM)靶向或 Ca2+不敏感的 AC2 靶向 GCaMP2 进行比较。在完整的细胞中,GCaMP2-AC8 对 CCE 迅速做出反应,但对其他类型的 Ca2+上升基本没有反应。全局 GCaMP2、PM 靶向 GCaMP2 和 GCaMP2-AC2 传感器在 Ca2+动员和非特异性 Ca2+内流期间报告了较大的 Ca2+通量,但对 CCE 的反应不如 GCaMP2-AC8 敏感。我们的数据表明,不同的 AC 同工型定位于质膜内的不同 Ca2+微区。AC2 通过蛋白激酶 C 调节,位于暴露于细胞质中广泛存在的 Ca2+信号的微区中。相比之下,AC8 周围存在一个独特的 Ca2+微区,该微区促进了对源自 CCE 的 Ca2+信号的选择性,并优化了 CCE 介导的 cAMP 合成。这种与特定信号蛋白相关的离散分隔 Ca2+信号的直接证明,为信号微区的功能组织提供了一个显著的见解。

相似文献

2
Capacitative Ca2+ entry via Orai1 and stromal interacting molecule 1 (STIM1) regulates adenylyl cyclase type 8.
Mol Pharmacol. 2009 Apr;75(4):830-42. doi: 10.1124/mol.108.051748. Epub 2009 Jan 26.
4
Residence of adenylyl cyclase type 8 in caveolae is necessary but not sufficient for regulation by capacitative Ca(2+) entry.
J Biol Chem. 2002 Feb 22;277(8):6025-31. doi: 10.1074/jbc.M109615200. Epub 2001 Dec 13.
5
Localized Na+/H+ exchanger 1 expression protects Ca2+-regulated adenylyl cyclases from changes in intracellular pH.
J Biol Chem. 2005 Sep 2;280(35):30864-72. doi: 10.1074/jbc.M414355200. Epub 2005 Jul 7.
6
Insights into the residence in lipid rafts of adenylyl cyclase AC8 and its regulation by capacitative calcium entry.
Am J Physiol Cell Physiol. 2009 Mar;296(3):C607-19. doi: 10.1152/ajpcell.00488.2008. Epub 2009 Jan 21.
7
Store-operated Ca²⁺-entry and adenylyl cyclase.
Cell Calcium. 2015 Oct;58(4):368-75. doi: 10.1016/j.ceca.2015.04.004. Epub 2015 Apr 22.
8
Direct binding between Orai1 and AC8 mediates dynamic interplay between Ca2+ and cAMP signaling.
Sci Signal. 2012 Apr 10;5(219):ra29. doi: 10.1126/scisignal.2002299.
10
The cytosolic domains of Ca2+-sensitive adenylyl cyclases dictate their targeting to plasma membrane lipid rafts.
J Biol Chem. 2005 Feb 25;280(8):6380-91. doi: 10.1074/jbc.M411987200. Epub 2004 Dec 1.

引用本文的文献

1
Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses.
Small GTPases. 2022 Jan;13(1):14-47. doi: 10.1080/21541248.2021.1885264. Epub 2021 May 6.
2
Endoplasmic Reticulum-Plasma Membrane Contact Sites: Regulators, Mechanisms, and Physiological Functions.
Front Cell Dev Biol. 2021 Feb 4;9:627700. doi: 10.3389/fcell.2021.627700. eCollection 2021.
3
Signaling Microdomains in the Spotlight: Visualizing Compartmentalized Signaling Using Genetically Encoded Fluorescent Biosensors.
Annu Rev Pharmacol Toxicol. 2021 Jan 6;61:587-608. doi: 10.1146/annurev-pharmtox-010617-053137.
4
CaMello-XR enables visualization and optogenetic control of G signals and receptor trafficking in GPCR-specific domains.
Commun Biol. 2019 Feb 14;2:60. doi: 10.1038/s42003-019-0292-y. eCollection 2019.
5
Spinal α -adrenoceptors and neuropathic pain modulation; therapeutic target.
Br J Pharmacol. 2019 Jul;176(14):2366-2381. doi: 10.1111/bph.14580. Epub 2019 Mar 6.
6
Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks.
Chem Rev. 2018 Dec 26;118(24):11707-11794. doi: 10.1021/acs.chemrev.8b00333. Epub 2018 Dec 14.
7
Mitochondrial junctions with cellular organelles: Ca signalling perspective.
Pflugers Arch. 2018 Aug;470(8):1181-1192. doi: 10.1007/s00424-018-2179-z. Epub 2018 Jul 7.
8
Molecular physiology and pathophysiology of stromal interaction molecules.
Exp Biol Med (Maywood). 2018 Mar;243(5):451-472. doi: 10.1177/1535370218754524. Epub 2018 Jan 24.
10
AKAP-mediated feedback control of cAMP gradients in developing hippocampal neurons.
Nat Chem Biol. 2017 Apr;13(4):425-431. doi: 10.1038/nchembio.2298. Epub 2017 Feb 13.

本文引用的文献

2
Separate elements within a single IQ-like motif in adenylyl cyclase type 8 impart ca2+/calmodulin binding and autoinhibition.
J Biol Chem. 2009 Jun 5;284(23):15573-88. doi: 10.1074/jbc.M809585200. Epub 2009 Mar 21.
3
STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1.
Cell. 2009 Mar 6;136(5):876-90. doi: 10.1016/j.cell.2009.02.014. Epub 2009 Feb 26.
4
Capacitative Ca2+ entry via Orai1 and stromal interacting molecule 1 (STIM1) regulates adenylyl cyclase type 8.
Mol Pharmacol. 2009 Apr;75(4):830-42. doi: 10.1124/mol.108.051748. Epub 2009 Jan 26.
5
Insights into the residence in lipid rafts of adenylyl cyclase AC8 and its regulation by capacitative calcium entry.
Am J Physiol Cell Physiol. 2009 Mar;296(3):C607-19. doi: 10.1152/ajpcell.00488.2008. Epub 2009 Jan 21.
6
Structural basis for calcium sensing by GCaMP2.
Structure. 2008 Dec 10;16(12):1817-27. doi: 10.1016/j.str.2008.10.008.
7
8
Ca2+ microdomains near plasma membrane Ca2+ channels: impact on cell function.
J Physiol. 2008 Jul 1;586(13):3043-54. doi: 10.1113/jphysiol.2008.153460. Epub 2008 May 8.
10
STIM1 converts TRPC1 from a receptor-operated to a store-operated channel: moving TRPC1 in and out of lipid rafts.
Cell Calcium. 2008 Nov;44(5):479-91. doi: 10.1016/j.ceca.2008.03.001. Epub 2008 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验