Suppr超能文献

Genome-wide gene-based association study.

作者信息

Yang Hsin-Chou, Liang Yu-Jen, Chung Chia-Min, Chen Jia-Wei, Pan Wen-Harn

机构信息

Institute of Statistical Science, Academia Sinica, Number 128, Section 2, Academia Road, Nankang, Taipei 115, Taiwan, Republic of China.

出版信息

BMC Proc. 2009 Dec 15;3 Suppl 7(Suppl 7):S135. doi: 10.1186/1753-6561-3-s7-s135.

Abstract

Genome-wide association studies, which analyzes hundreds of thousands of single-nucleotide polymorphisms to identify disease susceptibility genes, are challenging because the work involves intensive computation and complex modeling. We propose a two-stage genome-wide association scanning procedure, consisting of a single-locus association scan for the first stage and a gene-based association scan for the second stage. Marginal effects of single-nucleotide polymorphisms are examined by using the exact Armitage trend test or logistic regression, and gene effects are examined by using a p-value combination method. Compared with some existing single-locus and multilocus methods, the proposed method has the following merits: 1) convenient for definition of biologically meaningful regions, 2) powerful for detection of minor-effect genes, 3) helpful for alleviation of a multiple-testing problem, and 4) convenient for result interpretation. The method was applied to study Genetic Analysis Workshop 16 Problem 1 rheumatoid arthritis data, and strong association signals were found. The results show that the human major histocompatibility complex region is the most important genomic region associated with rheumatoid arthritis. Moreover, previously reported genes including PTPN22, C5, and IL2RB were confirmed; novel genes including HLA-DRA, BTNL2, C6orf10, NOTCH4, TAP2, and TNXB were identified by our analysis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验