Suppr超能文献

一种潜在变量偏最小二乘路径建模方法,用于区域关联和多基因效应,并应用于人类肥胖研究。

A latent variable partial least squares path modeling approach to regional association and polygenic effect with applications to a human obesity study.

机构信息

Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China.

出版信息

PLoS One. 2012;7(2):e31927. doi: 10.1371/journal.pone.0031927. Epub 2012 Feb 27.

Abstract

Genetic association studies are now routinely used to identify single nucleotide polymorphisms (SNPs) linked with human diseases or traits through single SNP-single trait tests. Here we introduced partial least squares path modeling (PLSPM) for association between single or multiple SNPs and a latent trait that can involve single or multiple correlated measurement(s). Furthermore, the framework naturally provides estimators of polygenic effect by appropriately weighting trait-attributing alleles. We conducted computer simulations to assess the performance via multiple SNPs and human obesity-related traits as measured by body mass index (BMI), waist and hip circumferences. Our results showed that the associate statistics had type I error rates close to nominal level and were powerful for a range of effect and sample sizes. When applied to 12 candidate regions in data (N = 2,417) from the European Prospective Investigation of Cancer (EPIC)-Norfolk study, a region in FTO was found to have stronger association (rs7204609∼rs9939881 at the first intron P = 4.29×10(-7)) than single SNP analysis (all with P>10(-4)) and a latent quantitative phenotype was obtained using a subset sample of EPIC-Norfolk (N = 12,559). We believe our method is appropriate for assessment of regional association and polygenic effect on a single or multiple traits.

摘要

遗传关联研究现在通常用于通过单 SNP-单性状测试来识别与人类疾病或特征相关的单核苷酸多态性 (SNP)。在这里,我们介绍了偏最小二乘路径建模 (PLSPM),用于单或多个 SNP 与潜在特征之间的关联,该特征可以涉及单或多个相关测量。此外,该框架通过适当加权特征归因等位基因,自然提供了多基因效应的估计值。我们进行了计算机模拟,通过多个 SNP 和人类肥胖相关特征(如体重指数 (BMI)、腰围和臀围)来评估性能。我们的结果表明,关联统计量的 I 型错误率接近名义水平,并且在一系列效应和样本量下都具有强大的功效。当应用于来自欧洲前瞻性癌症调查 (EPIC)-诺福克研究的数据的 12 个候选区域 (N = 2417) 时,在 FTO 中的一个区域发现了更强的关联 (第一内含子的 rs7204609∼rs9939881,P = 4.29×10(-7)),比单 SNP 分析 (所有 P>10(-4)) 更强,并且使用 EPIC-Norfolk 的子集样本获得了一个潜在的定量表型 (N = 12559)。我们相信我们的方法适用于评估单一或多个特征的区域关联和多基因效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b2f/3288051/1edaf2e13d06/pone.0031927.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验