Zheng Weiying, Rao Shaoqi
College of Biomedical Engineering, Capital Medical University, 10 Xitoutiao Youanmen Fengtai, Beijing, 100069, People's Republic of China.
Institute of Medical Systems Biology and School of Public Health, Guangdong Medical College, 1 Xin Cheng Avenue, Songshan Lake, Dongguan, 523808, Guangdong, People's Republic of China.
Arthritis Res Ther. 2015 Aug 8;17(1):202. doi: 10.1186/s13075-015-0715-1.
Pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. Gene variants directly affect the normal processes of a series of physiological and biochemical reactions, and therefore cause a variety of diseases traits to be changed accordingly. Moreover, a shared genetic susceptibility mechanism may exist between different diseases. Therefore, shared genes, with pleiotropic effects, are important to understand the sharing pathogenesis and hence the mechanisms underlying comorbidity.
In this study, we proposed combining genome-wide association studies (GWAS) and public knowledge databases to search for potential pleiotropic genes associated with rheumatoid arthritis (RA) and eight other related diseases. Here, a GWAS-based network analysis is used to recognize risk genes significantly associated with RA. These RA risk genes are re-extracted as potential pleiotropic genes if they have been proved to be susceptible genes for at least one of eight other diseases in the OMIM or PubMed databases.
In total, we extracted 116 potential functional pleiotropic genes for RA and eight other diseases, including five hub pleiotropic genes, BTNL2, HLA-DRA, NOTCH4, TNXB, and C6orf10, where BTNL2, NOTCH4, and C6orf10 are novel pleiotropic genes identified by our analysis.
This study demonstrates that pleiotropy is a common property of genes associated with disease traits. Our results ascertained the shared genetic risk profiles that predisposed individuals to RA and other diseases, which could have implications for identification of molecular targets for drug development, and classification of diseases.
基因多效性描述了单个基因对多个表型性状的遗传效应。基因变异直接影响一系列生理和生化反应的正常过程,因此会相应地导致多种疾病性状发生改变。此外,不同疾病之间可能存在共同的遗传易感性机制。因此,具有多效性的共享基因对于理解共享的发病机制以及共病的潜在机制非常重要。
在本研究中,我们提议结合全基因组关联研究(GWAS)和公共知识数据库来寻找与类风湿关节炎(RA)及其他八种相关疾病相关的潜在多效性基因。在此,基于GWAS的网络分析用于识别与RA显著相关的风险基因。如果这些RA风险基因在OMIM或PubMed数据库中已被证明是其他八种疾病中至少一种疾病的易感基因,则将其重新提取为潜在的多效性基因。
我们总共提取了116个与RA及其他八种疾病相关的潜在功能性多效性基因,包括五个核心多效性基因,即BTNL2、HLA - DRA、NOTCH4、TNXB和C6orf10,其中BTNL2、NOTCH4和C6orf10是我们分析中鉴定出的新型多效性基因。
本研究表明基因多效性是与疾病性状相关基因的共同特性。我们的结果确定了使个体易患RA和其他疾病的共享遗传风险概况,这可能对药物开发分子靶点的识别和疾病分类具有重要意义。