Sha Qiuying, Tang Rui, Zhang Shuanglin
Department of Mathematical Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
BMC Proc. 2009 Dec 15;3 Suppl 7(Suppl 7):S14. doi: 10.1186/1753-6561-3-s7-s14.
With the recent rapid improvements in high-throughout genotyping techniques, researchers are facing a very challenging task of large-scale genetic association analysis, especially at the whole-genome level, without an optimal solution. In this study, we propose a new approach for genetic association analysis based on a variable-sized sliding-window framework. This approach employs principal component analysis to find the optimal window size. Using the bisection algorithm in window size searching, the proposed method tackles the exhaustive computation problem. It is more efficient and effective than currently available approaches. We conduct the genome-wide association study in Genetic Analysis Workshop 16 (GAW16) Problem 1 data using the proposed method. Our method successfully identified several susceptibility genes that have been reported by other researchers and additional candidate genes for follow-up studies.
随着近期高通量基因分型技术的迅速发展,研究人员面临着一项极具挑战性的任务,即进行大规模基因关联分析,尤其是在全基因组水平上,且尚无最佳解决方案。在本研究中,我们提出了一种基于可变大小滑动窗口框架的基因关联分析新方法。该方法采用主成分分析来确定最佳窗口大小。通过在窗口大小搜索中使用二分算法,所提出的方法解决了穷举计算问题。它比目前可用的方法更高效、更有效。我们使用所提出的方法对遗传分析研讨会16(GAW16)问题1的数据进行了全基因组关联研究。我们的方法成功识别出了其他研究人员已报道的几个易感基因以及用于后续研究的额外候选基因。