Department of Preventive Medicine, University of Southern California, Los Angeles, California 90089-9011, USA.
Genet Epidemiol. 2009;33 Suppl 1(Suppl 1):S8-12. doi: 10.1002/gepi.20465.
Genome-wide association studies of discrete traits generally use simple methods of analysis based on chi(2) tests for contingency tables or logistic regression, at least for an initial scan of the entire genome. Nevertheless, more power might be obtained by using various methods that analyze multiple markers in combination. Methods based on sliding windows, wavelets, Bayesian shrinkage, or penalized likelihood methods, among others, were explored by various participants of Genetic Analysis Workshop 16 Group 1 to combine information across multiple markers within a region, while others used Bayesian variable selection methods for genome-wide multivariate analyses of all markers simultaneously. Imputation can be used to fill in missing markers on individual subjects within a study or in a meta-analysis of studies using different panels. Although multiple imputation theoretically should give more robust tests of association, one participant contribution found little difference between results of single and multiple imputation. Careful control of population stratification is essential, and two contributions found that previously reported associations with two genes disappeared after more precise control. Other issues considered by this group included subgroup analysis, gene-gene interactions, and the use of biomarkers.
全基因组关联研究离散性状通常使用简单的分析方法,基于卡方检验的列联表或逻辑回归,至少对于整个基因组的初步扫描。然而,通过使用组合分析多个标记的各种方法,可能会获得更多的信息。遗传分析研讨会 16 组 1 的不同参与者探索了基于滑动窗口、小波、贝叶斯收缩或惩罚似然方法等方法,以组合一个区域内多个标记的信息,而其他方法则使用贝叶斯变量选择方法对所有标记进行全基因组多变量分析。在个体研究中或使用不同面板的研究荟萃分析中,可使用插补法来填补缺失的标记。虽然理论上,多重插补应提供更稳健的关联检验,但一位参与者的研究发现,单重插补和多重插补的结果几乎没有差异。对群体分层的严格控制是至关重要的,有两项研究发现,在更精确的控制之后,两个基因的先前报告关联消失了。该组还考虑了亚组分析、基因-基因相互作用以及生物标志物的使用等问题。