Clarke Geraldine M, Pettersson Fredrik H, Morris Andrew P
Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
BMC Proc. 2009 Dec 15;3 Suppl 7(Suppl 7):S73. doi: 10.1186/1753-6561-3-s7-s73.
We compare and contrast case-only designs for detecting gene x gene (G x G) interaction in rheumatoid arthritis (RA) using the genome-wide data provided by Genetic Analysis Workshop 16 Problem 1. Logistic as well as novel multinomial and proportional odds models that do not depend on the specification of additive or dominant models for susceptibility loci were applied to the case-only sample. We identified 519 significant interactions (p < 1 x 10-4 in at least one test). All methods detected unique significant interactions; 169 were common to more than one model and only 21 were common to all models. Results emphasize that categorization of the genetic variables and choice of regression model are critical and hugely influential in the identification of G x G. Porportional odds and multinomial methods provide new tools for identification of G x G interactions.
我们利用遗传分析研讨会16问题1提供的全基因组数据,比较并对比了用于检测类风湿性关节炎(RA)中基因×基因(G×G)相互作用的病例对照设计。将不依赖于易感基因座加性或显性模型设定的逻辑模型以及新的多项和比例优势模型应用于病例对照样本。我们识别出519个显著的相互作用(至少在一次检验中p < 1×10⁻⁴)。所有方法都检测到了独特的显著相互作用;169个相互作用为多个模型所共有,而所有模型共有的只有21个。结果强调,遗传变量的分类和回归模型的选择对于识别G×G相互作用至关重要且影响巨大。比例优势和多项方法为识别G×G相互作用提供了新工具。